-
Something wrong with this record ?
A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake
J. Morrissey, R. Sutak, J. Paz-Yepes, A. Tanaka, A. Moustafa, A. Veluchamy, Y. Thomas, H. Botebol, FY. Bouget, JB. McQuaid, L. Tirichine, AE. Allen, E. Lesuisse, C. Bowler,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Cell Press Free Archives
from 1995-01-01 to 1 year ago
Free Medical Journals
from 1995 to 1 year ago
- MeSH
- Species Specificity MeSH
- Phytoplankton metabolism MeSH
- Membrane Proteins metabolism MeSH
- Marine Biology MeSH
- Seawater chemistry MeSH
- Diatoms metabolism MeSH
- Gene Expression Profiling MeSH
- Protein Structure, Tertiary MeSH
- Iron metabolism pharmacokinetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031534
- 003
- CZ-PrNML
- 005
- 20151009102744.0
- 007
- ta
- 008
- 151005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2014.12.004 $2 doi
- 035 __
- $a (PubMed)25557662
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Morrissey, Joe $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 245 12
- $a A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake / $c J. Morrissey, R. Sutak, J. Paz-Yepes, A. Tanaka, A. Moustafa, A. Veluchamy, Y. Thomas, H. Botebol, FY. Bouget, JB. McQuaid, L. Tirichine, AE. Allen, E. Lesuisse, C. Bowler,
- 520 9_
- $a Numerous cellular functions including respiration require iron. Plants and phytoplankton must also maintain the iron-rich photosynthetic electron transport chain, which most likely evolved in the iron-replete reducing environments of the Proterozoic ocean [1]. Iron bioavailability has drastically decreased in the contemporary ocean [1], most likely selecting for the evolution of efficient iron acquisition mechanisms among modern phytoplankton. Mesoscale iron fertilization experiments often result in blooms dominated by diatoms [2], indicating that diatoms have adaptations that allow survival in iron-limited waters and rapid multiplication when iron becomes available. Yet the genetic and molecular bases are unclear, as very few iron uptake genes have been functionally characterized from marine eukaryotic phytoplankton, and large portions of diatom iron starvation transcriptomes are genes encoding unknown functions [3-5]. Here we show that the marine diatom Phaeodactylum tricornutum utilizes ISIP2a to concentrate Fe(III) at the cell surface as part of a novel, copper-independent and thermodynamically controlled iron uptake system. ISIP2a is expressed in response to iron limitation several days prior to the induction of ferrireductase activity, and it facilitates significant Fe(III) uptake during the initial response to Fe limitation. ISIP2a is able to directly bind Fe(III) and increase iron uptake when heterologously expressed, whereas knockdown of ISIP2a in P. tricornutum decreases iron uptake, resulting in impaired growth and chlorosis during iron limitation. ISIP2a is expressed by diverse marine phytoplankton, indicating that it is an ecologically significant adaptation to the unique nutrient composition of marine environments.
- 650 _2
- $a rozsivky $x metabolismus $7 D017377
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a železo $x metabolismus $x farmakokinetika $7 D007501
- 650 _2
- $a mořská biologie $7 D008386
- 650 _2
- $a membránové proteiny $x metabolismus $7 D008565
- 650 _2
- $a fytoplankton $x metabolismus $7 D010839
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a mořská voda $x chemie $7 D012623
- 650 _2
- $a druhová specificita $7 D013045
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Sutak, Robert $u Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic.
- 700 1_
- $a Paz-Yepes, Javier $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 700 1_
- $a Tanaka, Atsuko $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 700 1_
- $a Moustafa, Ahmed $u Department of Biology and Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt.
- 700 1_
- $a Veluchamy, Alaguraj $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 700 1_
- $a Thomas, Yann $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 700 1_
- $a Botebol, Hugo $u Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMR 7621, Quai Racovizta, 66650 Banyuls/mer, France.
- 700 1_
- $a Bouget, François-Yves $u Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMR 7621, Quai Racovizta, 66650 Banyuls/mer, France.
- 700 1_
- $a McQuaid, Jeffrey B $u Microbial and Environmental Genomics, J. Craig Venter Institute, Capricorn Lane, San Diego, CA 92037 USA.
- 700 1_
- $a Tirichine, Leila $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France.
- 700 1_
- $a Allen, Andrew E $u Microbial and Environmental Genomics, J. Craig Venter Institute, Capricorn Lane, San Diego, CA 92037 USA. $7 gn_A_00004441
- 700 1_
- $a Lesuisse, Emmanuel $u Institut Jacques Monod, Université Paris Diderot & CNRS, UMR7592, 15 rue Hélène Brion, 75013 Paris, France. Electronic address: lesuisse.emmanuel@ijm.univ-paris-diderot.fr.
- 700 1_
- $a Bowler, Chris $u Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Centre National de la Recherche Scientifique (CNRS) UMR 8197 INSERM U1024, 46 Rue d'Ulm, 75005 Paris, France. Electronic address: cbowler@biologie.ens.fr.
- 773 0_
- $w MED00006482 $t Current biology CB $x 1879-0445 $g Roč. 25, č. 3 (2015), s. 364-71
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25557662 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151009102931 $b ABA008
- 999 __
- $a ok $b bmc $g 1092410 $s 914660
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 25 $c 3 $d 364-71 $e 20141231 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20151005