-
Je něco špatně v tomto záznamu ?
The evolutionary history of termites as inferred from 66 mitochondrial genomes
T. Bourguignon, N. Lo, SL. Cameron, J. Šobotník, Y. Hayashi, S. Shigenobu, D. Watanabe, Y. Roisin, T. Miura, TA. Evans,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1983 do Před 1 rokem
PubMed Central
od 2008
Open Access Digital Library
od 1983-12-01
Open Access Digital Library
od 1983-12-01
Oxford Journals Open Access Collection
od 1983-12-01
Oxford Journals Open Access Collection
od 2002
ROAD: Directory of Open Access Scholarly Resources
od 1983
PubMed
25389205
DOI
10.1093/molbev/msu308
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- genom mitochondriální genetika MeSH
- Isoptera klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
Czech University of Life Sciences Faculty of Forestry and Wood Sciences Prague Czech Republic
Department of Biological Sciences National University of Singapore Singapore Singapore
Evolutionary Biology and Ecology Université Libre de Bruxelles Bruxelles Belgium
Graduate School of Environmental Science Hokkaido University Sapporo Hokkaido Japan
Okazaki Institute for Integrative Bioscience National Institutes of Natural Sciences Okazaki Japan
School of Biological Sciences University of Sydney Sydney NSW Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031737
- 003
- CZ-PrNML
- 005
- 20151014095640.0
- 007
- ta
- 008
- 151005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/molbev/msu308 $2 doi
- 035 __
- $a (PubMed)25389205
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bourguignon, Thomas $u Department of Biological Sciences, National University of Singapore, Singapore, Singapore Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, Prague, Czech Republic thomas.bourgui@gmail.com.
- 245 14
- $a The evolutionary history of termites as inferred from 66 mitochondrial genomes / $c T. Bourguignon, N. Lo, SL. Cameron, J. Šobotník, Y. Hayashi, S. Shigenobu, D. Watanabe, Y. Roisin, T. Miura, TA. Evans,
- 520 9_
- $a Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biologická evoluce $7 D005075
- 650 _2
- $a genom mitochondriální $x genetika $7 D054629
- 650 _2
- $a Isoptera $x klasifikace $x genetika $7 D020049
- 650 _2
- $a fylogeneze $7 D010802
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lo, Nathan $u School of Biological Sciences, University of Sydney, Sydney, NSW, Australia.
- 700 1_
- $a Cameron, Stephen L $u Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.
- 700 1_
- $a Šobotník, Jan $u Czech University of Life Sciences, Faculty of Forestry and Wood Sciences, Prague, Czech Republic.
- 700 1_
- $a Hayashi, Yoshinobu $u Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan School of Biological Sciences, University of Sydney, Sydney, NSW, Australia.
- 700 1_
- $a Shigenobu, Shuji $u Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan.
- 700 1_
- $a Watanabe, Dai $u Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan.
- 700 1_
- $a Roisin, Yves $u Evolutionary Biology and Ecology, Université Libre de Bruxelles, Bruxelles, Belgium.
- 700 1_
- $a Miura, Toru $u Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan.
- 700 1_
- $a Evans, Theodore A $u Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- 773 0_
- $w MED00006601 $t Molecular biology and evolution $x 1537-1719 $g Roč. 32, č. 2 (2015), s. 406-21
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25389205 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151014095830 $b ABA008
- 999 __
- $a ok $b bmc $g 1092613 $s 914863
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 32 $c 2 $d 406-21 $e 20141110 $i 1537-1719 $m Molecular biology and evolution $n Mol Biol Evol $x MED00006601
- LZP __
- $a Pubmed-20151005