-
Je něco špatně v tomto záznamu ?
Mathematical forecasting methods for predicting lead contents in animal organs on the basis of the environmental conditions
T. Czech, F. Gambuś, J. Wieczorek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- anatomické struktury zvířat chemie účinky léků MeSH
- látky znečišťující půdu analýza MeSH
- myši MeSH
- olovo analýza toxicita MeSH
- potravní řetězec MeSH
- předpověď MeSH
- rostliny chemie MeSH
- teoretické modely * MeSH
- zinek analýza MeSH
- životní prostředí * MeSH
- znečištění životního prostředí analýza MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
The main objective of this study was to determine and describe the lead transfer in the soil-plant-animal system in areas polluted with this metal at varying degrees, with the use of mathematical forecasting methods and data mining tools contained in the Statistica 9.0 software programme. The starting point for the forecasting models comprised results derived from an analysis of different features of soil and plants, collected from 139 locations in an area covering 100km(2) around a lead-zinc ore mining and processing plant ('Boleslaw'), at Bukowno in southern Poland. In addition, the lead content was determined in the tissues and organs of 110 small rodents (mainly mice) caught in the same area. The prediction models, elaborated with the use of classification algorithms, forecasted with high probability the class (range) of pollution in animal tissues and organs with lead, based on various soil and plant properties of the study area. However, prediction models which use multilayer neural networks made it possible to calculate the content of lead (predicted versus measured) in animal tissues and organs with an excellent correlation coefficient.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031826
- 003
- CZ-PrNML
- 005
- 20151009111337.0
- 007
- ta
- 008
- 151005s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ecoenv.2014.09.006 $2 doi
- 035 __
- $a (PubMed)25262112
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Czech, Tomasz $u Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. A. Mickiewicz 21, 31-120 Krakow, Poland. Electronic address: Tomasz.Czech@ur.krakow.pl.
- 245 10
- $a Mathematical forecasting methods for predicting lead contents in animal organs on the basis of the environmental conditions / $c T. Czech, F. Gambuś, J. Wieczorek,
- 520 9_
- $a The main objective of this study was to determine and describe the lead transfer in the soil-plant-animal system in areas polluted with this metal at varying degrees, with the use of mathematical forecasting methods and data mining tools contained in the Statistica 9.0 software programme. The starting point for the forecasting models comprised results derived from an analysis of different features of soil and plants, collected from 139 locations in an area covering 100km(2) around a lead-zinc ore mining and processing plant ('Boleslaw'), at Bukowno in southern Poland. In addition, the lead content was determined in the tissues and organs of 110 small rodents (mainly mice) caught in the same area. The prediction models, elaborated with the use of classification algorithms, forecasted with high probability the class (range) of pollution in animal tissues and organs with lead, based on various soil and plant properties of the study area. However, prediction models which use multilayer neural networks made it possible to calculate the content of lead (predicted versus measured) in animal tissues and organs with an excellent correlation coefficient.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a anatomické struktury zvířat $x chemie $x účinky léků $7 D000825
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a životní prostředí $7 D004777
- 650 _2
- $a znečištění životního prostředí $x analýza $7 D004787
- 650 _2
- $a potravní řetězec $7 D020387
- 650 _2
- $a předpověď $7 D005544
- 650 _2
- $a olovo $x analýza $x toxicita $7 D007854
- 650 _2
- $a myši $7 D051379
- 650 12
- $a teoretické modely $7 D008962
- 650 _2
- $a rostliny $x chemie $7 D010944
- 650 _2
- $a látky znečišťující půdu $x analýza $7 D012989
- 650 _2
- $a zinek $x analýza $7 D015032
- 651 _2
- $a Polsko $7 D011044
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gambuś, Florian $u Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. A. Mickiewicz 21, 31-120 Krakow, Poland.
- 700 1_
- $a Wieczorek, Jerzy $u Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Al. A. Mickiewicz 21, 31-120 Krakow, Poland.
- 773 0_
- $w MED00001478 $t Ecotoxicology and environmental safety $x 1090-2414 $g Roč. 110, č. - (2014), s. 232-8
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25262112 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151009111523 $b ABA008
- 999 __
- $a ok $b bmc $g 1092702 $s 914952
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 110 $c - $d 232-8 $e 20140926 $i 1090-2414 $m Ecotoxicology and environmental safety $n Ecotoxicol Environ Safety $x MED00001478
- LZP __
- $a Pubmed-20151005