-
Je něco špatně v tomto záznamu ?
Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings
R. Janca, P. Jezdik, R. Cmejla, M. Tomasek, GA. Worrell, M. Stead, J. Wagenaar, JG. Jefferys, P. Krsek, V. Komarek, P. Jiruska, P. Marusic,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1999-07-01 do 2017-12-31
Medline Complete (EBSCOhost)
od 2009-05-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1999-07-01 do 2017-12-31
Psychology Database (ProQuest)
od 1999-07-01 do 2017-12-31
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- chronická bolest diagnóza patofyziologie MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- epilepsie diagnóza patofyziologie MeSH
- falešně negativní reakce MeSH
- falešně pozitivní reakce MeSH
- implantované elektrody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patofyziologie MeSH
- obličejová bolest diagnóza patofyziologie MeSH
- počítačové zpracování signálu MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interictal epileptiform discharges (spikes, IEDs) are electrographic markers of epileptic tissue and their quantification is utilized in planning of surgical resection. Visual analysis of long-term multi-channel intracranial recordings is extremely laborious and prone to bias. Development of new and reliable techniques of automatic spike detection represents a crucial step towards increasing the information yield of intracranial recordings and to improve surgical outcome. In this study, we designed a novel and robust detection algorithm that adaptively models statistical distributions of signal envelopes and enables discrimination of signals containing IEDs from signals with background activity. This detector demonstrates performance superior both to human readers and to an established detector. It is even capable of identifying low-amplitude IEDs which are often missed by experts and which may represent an important source of clinical information. Application of the detector to non-epileptic intracranial data from patients with intractable facial pain revealed the existence of sharp transients with waveforms reminiscent of interictal discharges that can represent biological sources of false positive detections. Identification of these transients enabled us to develop and propose secondary processing steps, which may exclude these transients, improving the detector's specificity and having important implications for future development of spike detectors in general.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031982
- 003
- CZ-PrNML
- 005
- 20250925114341.0
- 007
- ta
- 008
- 151005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10548-014-0379-1 $2 doi
- 035 __
- $a (PubMed)24970691
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Janca, Radek $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic.
- 245 10
- $a Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings / $c R. Janca, P. Jezdik, R. Cmejla, M. Tomasek, GA. Worrell, M. Stead, J. Wagenaar, JG. Jefferys, P. Krsek, V. Komarek, P. Jiruska, P. Marusic,
- 520 9_
- $a Interictal epileptiform discharges (spikes, IEDs) are electrographic markers of epileptic tissue and their quantification is utilized in planning of surgical resection. Visual analysis of long-term multi-channel intracranial recordings is extremely laborious and prone to bias. Development of new and reliable techniques of automatic spike detection represents a crucial step towards increasing the information yield of intracranial recordings and to improve surgical outcome. In this study, we designed a novel and robust detection algorithm that adaptively models statistical distributions of signal envelopes and enables discrimination of signals containing IEDs from signals with background activity. This detector demonstrates performance superior both to human readers and to an established detector. It is even capable of identifying low-amplitude IEDs which are often missed by experts and which may represent an important source of clinical information. Application of the detector to non-epileptic intracranial data from patients with intractable facial pain revealed the existence of sharp transients with waveforms reminiscent of interictal discharges that can represent biological sources of false positive detections. Identification of these transients enabled us to develop and propose secondary processing steps, which may exclude these transients, improving the detector's specificity and having important implications for future development of spike detectors in general.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $x patofyziologie $7 D001921
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a chronická bolest $x diagnóza $x patofyziologie $7 D059350
- 650 _2
- $a implantované elektrody $7 D004567
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a epilepsie $x diagnóza $x patofyziologie $7 D004827
- 650 _2
- $a obličejová bolest $x diagnóza $x patofyziologie $7 D005157
- 650 _2
- $a falešně negativní reakce $7 D005188
- 650 _2
- $a falešně pozitivní reakce $7 D005189
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jezdik, Petr
- 700 1_
- $a Cmejla, Roman
- 700 1_
- $a Tomasek, Martin
- 700 1_
- $a Worrell, Gregory A
- 700 1_
- $a Stead, Matt
- 700 1_
- $a Wagenaar, Joost
- 700 1_
- $a Jefferys, John G. R. $7 xx0335563
- 700 1_
- $a Krsek, Pavel
- 700 1_
- $a Komarek, Vladimir
- 700 1_
- $a Jiruska, Premysl
- 700 1_
- $a Marusic, Petr
- 773 0_
- $w MED00007561 $t Brain topography $x 1573-6792 $g Roč. 28, č. 1 (2015), s. 172-83
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/24970691 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20250925114335 $b ABA008
- 999 __
- $a ok $b bmc $g 1092858 $s 915108
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 28 $c 1 $d 172-83 $e 20140627 $i 1573-6792 $m Brain topography $n Brain Topogr $x MED00007561
- LZP __
- $a Pubmed-20151005