-
Je něco špatně v tomto záznamu ?
Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture
A. Havrdová, J. Douda, K. Krak, P. Vít, V. Hadincová, P. Zákravský, B. Mandák,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26290117
DOI
10.1111/mec.13348
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- DNA chloroplastová genetika MeSH
- DNA rostlinná genetika MeSH
- genetická variace * MeSH
- klimatické změny * MeSH
- mikrosatelitní repetice MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- olše genetika MeSH
- populační genetika * MeSH
- refugium * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000056
- 003
- CZ-PrNML
- 005
- 20200121083554.0
- 007
- ta
- 008
- 160108s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/mec.13348 $2 doi
- 035 __
- $a (PubMed)26290117
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Havrdová, Alena $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
- 245 10
- $a Higher genetic diversity in recolonized areas than in refugia of Alnus glutinosa triggered by continent-wide lineage admixture / $c A. Havrdová, J. Douda, K. Krak, P. Vít, V. Hadincová, P. Zákravský, B. Mandák,
- 520 9_
- $a Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.
- 650 _2
- $a olše $x genetika $7 D029661
- 650 _2
- $a Bayesova věta $7 D001499
- 650 12
- $a klimatické změny $7 D057231
- 650 _2
- $a DNA chloroplastová $x genetika $7 D018742
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 12
- $a genetická variace $7 D014644
- 650 12
- $a populační genetika $7 D005828
- 650 _2
- $a mikrosatelitní repetice $7 D018895
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 12
- $a refugium $7 D000068236
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 651 _2
- $a Evropa $7 D005060
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Douda, Jan $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
- 700 1_
- $a Krak, Karol $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
- 700 1_
- $a Vít, Petr $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
- 700 1_
- $a Hadincová, Věroslava $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
- 700 1_
- $a Zákravský, Petr $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic.
- 700 1_
- $a Mandák, Bohumil $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic. Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha 6 - Suchdol, CZ-165 21, Czech Republic.
- 773 0_
- $w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 24, č. 18 (2015), s. 4759-77
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26290117 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20200121083931 $b ABA008
- 999 __
- $a ok $b bmc $g 1102337 $s 924262
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 24 $c 18 $d 4759-77 $e 20150906 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
- LZP __
- $a Pubmed-20160108