-
Je něco špatně v tomto záznamu ?
TiO2 and Fe2O3 films for photoelectrochemical water splitting
J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 1997
Free Medical Journals
od 1997
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 2009-03-01
Health & Medicine (ProQuest)
od 1997-01-01
- MeSH
- difrakce rentgenového záření MeSH
- elektřina MeSH
- elektrochemie * MeSH
- fotochemie * MeSH
- mikroskopie elektronová rastrovací MeSH
- Ramanova spektroskopie MeSH
- titan chemie MeSH
- voda chemie MeSH
- železité sloučeniny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic film could be explained by ability to address some of the hematite drawbacks by deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000388
- 003
- CZ-PrNML
- 005
- 20160126121639.0
- 007
- ta
- 008
- 160108s2015 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/molecules20011046 $2 doi
- 035 __
- $a (PubMed)25584834
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Krysa, Josef $u Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 16628, Czech Republic. krysaj@vscht.cz.
- 245 10
- $a TiO2 and Fe2O3 films for photoelectrochemical water splitting / $c J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka,
- 520 9_
- $a Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic film could be explained by ability to address some of the hematite drawbacks by deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn.
- 650 _2
- $a elektřina $7 D004560
- 650 12
- $a elektrochemie $7 D004563
- 650 _2
- $a železité sloučeniny $x chemie $7 D005290
- 650 _2
- $a mikroskopie elektronová rastrovací $7 D008855
- 650 12
- $a fotochemie $7 D010777
- 650 _2
- $a Ramanova spektroskopie $7 D013059
- 650 _2
- $a titan $x chemie $7 D014025
- 650 _2
- $a voda $x chemie $7 D014867
- 650 _2
- $a difrakce rentgenového záření $7 D014961
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zlamal, Martin $u Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 16628, Czech Republic. zlamalm@vscht.cz.
- 700 1_
- $a Kment, Stepan $u Joint Laboratory of Optics, Palacky University, RCPTM, 17. listopadu 12, Olomouc 77146, Czech Republic. kment@fzu.cz.
- 700 1_
- $a Brunclikova, Michaela $u Department of Inorganic Technology, University of Chemistry and Technology, Prague, Technická 5, Prague 16628, Czech Republic. brunclim@vscht.cz.
- 700 1_
- $a Hubicka, Zdenek $u Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague 14800, Czech Republic. hubicka@fzu.cz.
- 773 0_
- $w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 20, č. 1 (2015), s. 1046-58
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25584834 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126121802 $b ABA008
- 999 __
- $a ok $b bmc $g 1102669 $s 924594
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 20 $c 1 $d 1046-58 $e 20150109 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
- LZP __
- $a Pubmed-20160108