• Je něco špatně v tomto záznamu ?

Genetic architecture of natural variation of telomere length in Arabidopsis thaliana

N. Fulcher, A. Teubenbacher, E. Kerdaffrec, A. Farlow, M. Nordborg, K. Riha,

. 2015 ; 199 (2) : 625-35. [pub] 20141208

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000465
E-zdroje Online Plný text

NLK Free Medical Journals od 1916 do Před 6 měsíci
Freely Accessible Science Journals od 1916 do Před 1 rokem
Europe PubMed Central od 1916 do Před 1 rokem
ProQuest Central od 2004-10-01 do 2020-12-31
Open Access Digital Library od 1916-01-01
Open Access Digital Library od 1916-01-01
Medline Complete (EBSCOhost) od 1916-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2004-10-01 do 2020-12-31
Family Health Database (ProQuest) od 2004-10-01 do 2020-12-31
Public Health Database (ProQuest) od 2004-10-01 do 2020-12-31

Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000465
003      
CZ-PrNML
005      
20160413121032.0
007      
ta
008      
160108s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1534/genetics.114.172163 $2 doi
035    __
$a (PubMed)25488978
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Fulcher, Nick $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
245    10
$a Genetic architecture of natural variation of telomere length in Arabidopsis thaliana / $c N. Fulcher, A. Teubenbacher, E. Kerdaffrec, A. Farlow, M. Nordborg, K. Riha,
520    9_
$a Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.
650    _2
$a Arabidopsis $x genetika $7 D017360
650    _2
$a mapování chromozomů $7 D002874
650    _2
$a molekulární evoluce $7 D019143
650    12
$a genetická variace $7 D014644
650    _2
$a populační genetika $7 D005828
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a lokus kvantitativního znaku $7 D040641
650    12
$a selekce (genetika) $7 D012641
650    12
$a telomery $7 D016615
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Teubenbacher, Astrid $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
700    1_
$a Kerdaffrec, Envel $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
700    1_
$a Farlow, Ashley $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
700    1_
$a Nordborg, Magnus $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
700    1_
$a Riha, Karel $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic karel.riha@ceitec.muni.cz.
773    0_
$w MED00001904 $t Genetics $x 1943-2631 $g Roč. 199, č. 2 (2015), s. 625-35
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25488978 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160413121116 $b ABA008
999    __
$a ok $b bmc $g 1102746 $s 924671
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 199 $c 2 $d 625-35 $e 20141208 $i 1943-2631 $m Genetics $n Genetics $x MED00001904
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...