-
Je něco špatně v tomto záznamu ?
Genetic architecture of natural variation of telomere length in Arabidopsis thaliana
N. Fulcher, A. Teubenbacher, E. Kerdaffrec, A. Farlow, M. Nordborg, K. Riha,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1916 do Před 6 měsíci
Freely Accessible Science Journals
od 1916 do Před 1 rokem
Europe PubMed Central
od 1916 do Před 1 rokem
ProQuest Central
od 2004-10-01 do 2020-12-31
Open Access Digital Library
od 1916-01-01
Open Access Digital Library
od 1916-01-01
Medline Complete (EBSCOhost)
od 1916-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2004-10-01 do 2020-12-31
Family Health Database (ProQuest)
od 2004-10-01 do 2020-12-31
Public Health Database (ProQuest)
od 2004-10-01 do 2020-12-31
- MeSH
- Arabidopsis genetika MeSH
- genetická variace * MeSH
- jednonukleotidový polymorfismus MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- molekulární evoluce MeSH
- populační genetika MeSH
- selekce (genetika) * MeSH
- telomery * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000465
- 003
- CZ-PrNML
- 005
- 20160413121032.0
- 007
- ta
- 008
- 160108s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1534/genetics.114.172163 $2 doi
- 035 __
- $a (PubMed)25488978
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Fulcher, Nick $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
- 245 10
- $a Genetic architecture of natural variation of telomere length in Arabidopsis thaliana / $c N. Fulcher, A. Teubenbacher, E. Kerdaffrec, A. Farlow, M. Nordborg, K. Riha,
- 520 9_
- $a Telomeres represent the repetitive sequences that cap chromosome ends and are essential for their protection. Telomere length is known to be highly heritable and is derived from a homeostatic balance between telomeric lengthening and shortening activities. Specific loci that form the genetic framework underlying telomere length homeostasis, however, are not well understood. To investigate the extent of natural variation of telomere length in Arabidopsis thaliana, we examined 229 worldwide accessions by terminal restriction fragment analysis. The results showed a wide range of telomere lengths that are specific to individual accessions. To identify loci that are responsible for this variation, we adopted a quantitative trait loci (QTL) mapping approach with multiple recombinant inbred line (RIL) populations. A doubled haploid RIL population was first produced using centromere-mediated genome elimination between accessions with long (Pro-0) and intermediate (Col-0) telomere lengths. Composite interval mapping analysis of this population along with two established RIL populations (Ler-2/Cvi-0 and Est-1/Col-0) revealed a number of shared and unique QTL. QTL detected in the Ler-2/Cvi-0 population were examined using near isogenic lines that confirmed causative regions on chromosomes 1 and 2. In conclusion, this work describes the extent of natural variation of telomere length in A. thaliana, identifies a network of QTL that influence telomere length homeostasis, examines telomere length dynamics in plants with hybrid backgrounds, and shows the effects of two identified regions on telomere length regulation.
- 650 _2
- $a Arabidopsis $x genetika $7 D017360
- 650 _2
- $a mapování chromozomů $7 D002874
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 12
- $a genetická variace $7 D014644
- 650 _2
- $a populační genetika $7 D005828
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a lokus kvantitativního znaku $7 D040641
- 650 12
- $a selekce (genetika) $7 D012641
- 650 12
- $a telomery $7 D016615
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Teubenbacher, Astrid $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
- 700 1_
- $a Kerdaffrec, Envel $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
- 700 1_
- $a Farlow, Ashley $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
- 700 1_
- $a Nordborg, Magnus $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria.
- 700 1_
- $a Riha, Karel $u Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Vienna 1030, Austria Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, Czech Republic karel.riha@ceitec.muni.cz.
- 773 0_
- $w MED00001904 $t Genetics $x 1943-2631 $g Roč. 199, č. 2 (2015), s. 625-35
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25488978 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160413121116 $b ABA008
- 999 __
- $a ok $b bmc $g 1102746 $s 924671
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 199 $c 2 $d 625-35 $e 20141208 $i 1943-2631 $m Genetics $n Genetics $x MED00001904
- LZP __
- $a Pubmed-20160108