Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats

E. Szczurowska, P. Mareš,

. 2015 ; 111 (-) : 1-8. [pub] 20141111

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000511

Ro 25-6981 maleate is a highly selective and activity-dependent antagonist of NMDA ionotropic glutamate receptors containing NR2B subunit (NR2B/NMDARs). The aim of our study was to investigate the influence of Ro 25-6981 administration in developing rats on physiological (single and paired pulse cortical interhemispheric evoked potentials) and epileptic brain activity (cortical afterdischarges (ADs)). Electrophysiological experiments were performed in animals with epidurally implanted electrodes at postnatal days (P) P12, P18, and P25. The drug was injected intraperitoneally at a dose of 1 or 3mg/kg. Control animals were injected with saline (1ml/kg). Single interhemispheric responses were evoked with 0.5-ms biphasic pulses with intensities increasing from 0.4 to 5mA, paired-pulse responses were elicited by twofold threshold intensity. The ADs were elicited by series of 15-s of 1-ms pulses at 8-Hz frequency. Firstly, six stimulations with stable suprathreshold intensity repeated at 30-min intervals were used to determine the time course of Ro 25-6981 effects against ADs in P12 animals. Secondly, similar experiment was performed in all age groups of animals but with 20-min intervals as well as a further experiment using stimulations with stepwise intensities increasing at 10-min intervals from 0.2 to 15 mA. Pretreatment with the 3-mg/kg (but not the lower) dose of Ro 25-9681 decreased significantly the amplitude of single responses evoked with higher stimulation intensities in P12 and P18 animals. Both doses affected responses in P25 animals, only the 1-mg/kg dose was more efficacious than the 3-mg/kg one. Paired pulse responses were not affected by either dose of Ro 25-6981 in any age group. Ro 25-9681 clearly influenced the duration of ADs only in P12 animals. The 1-mg/kg dose did not change the duration of ADs whereas the 3-mg/kg dose suppressed progressive prolongation of ADs with repeated stimulations. This effect was seen even 110-min after the drug injection. The modification of ADs, i.e. stimulations with stepwise increasing intensities (10 min intervals) was used to demonstrate possible dependence on activity. The Ro 25-6981 was administered immediately after the 4-mA stimulation (i.e. when rats experienced six ADs on the average). The 3-mg/kg dose resulted in shorter ADs after high stimulation intensities in P12. There were no significant effects in older animals, only a tendency to ADs shortening was observed in P25 rats. In conclusion, our results indicate that Ro 25-6981 as a selective antagonist of NR2B/NMDARs exhibit age- and activation-dependent anticonvulsant action at early postnatal development. In contrast, the influence of Ro 25-6981 on physiological excitability induced by single pulse stimulation of sensorimotor cortex does not depend on age. This compound may thus represent a useful antiepileptic agent in immature brain since its action against ADs prolongation can be observed even 110 min after the single administration of the drug.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000511
003      
CZ-PrNML
005      
20160122112336.0
007      
ta
008      
160108s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.brainresbull.2014.11.001 $2 doi
035    __
$a (PubMed)25446739
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Szczurowska, Ewa $u Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic. Electronic address: ewa.szczurowska@epilepsy.biomed.cas.cz.
245    10
$a Different action of a specific NR2B/NMDA antagonist Ro 25-6981 on cortical evoked potentials and epileptic afterdischarges in immature rats / $c E. Szczurowska, P. Mareš,
520    9_
$a Ro 25-6981 maleate is a highly selective and activity-dependent antagonist of NMDA ionotropic glutamate receptors containing NR2B subunit (NR2B/NMDARs). The aim of our study was to investigate the influence of Ro 25-6981 administration in developing rats on physiological (single and paired pulse cortical interhemispheric evoked potentials) and epileptic brain activity (cortical afterdischarges (ADs)). Electrophysiological experiments were performed in animals with epidurally implanted electrodes at postnatal days (P) P12, P18, and P25. The drug was injected intraperitoneally at a dose of 1 or 3mg/kg. Control animals were injected with saline (1ml/kg). Single interhemispheric responses were evoked with 0.5-ms biphasic pulses with intensities increasing from 0.4 to 5mA, paired-pulse responses were elicited by twofold threshold intensity. The ADs were elicited by series of 15-s of 1-ms pulses at 8-Hz frequency. Firstly, six stimulations with stable suprathreshold intensity repeated at 30-min intervals were used to determine the time course of Ro 25-6981 effects against ADs in P12 animals. Secondly, similar experiment was performed in all age groups of animals but with 20-min intervals as well as a further experiment using stimulations with stepwise intensities increasing at 10-min intervals from 0.2 to 15 mA. Pretreatment with the 3-mg/kg (but not the lower) dose of Ro 25-9681 decreased significantly the amplitude of single responses evoked with higher stimulation intensities in P12 and P18 animals. Both doses affected responses in P25 animals, only the 1-mg/kg dose was more efficacious than the 3-mg/kg one. Paired pulse responses were not affected by either dose of Ro 25-6981 in any age group. Ro 25-9681 clearly influenced the duration of ADs only in P12 animals. The 1-mg/kg dose did not change the duration of ADs whereas the 3-mg/kg dose suppressed progressive prolongation of ADs with repeated stimulations. This effect was seen even 110-min after the drug injection. The modification of ADs, i.e. stimulations with stepwise increasing intensities (10 min intervals) was used to demonstrate possible dependence on activity. The Ro 25-6981 was administered immediately after the 4-mA stimulation (i.e. when rats experienced six ADs on the average). The 3-mg/kg dose resulted in shorter ADs after high stimulation intensities in P12. There were no significant effects in older animals, only a tendency to ADs shortening was observed in P25 rats. In conclusion, our results indicate that Ro 25-6981 as a selective antagonist of NR2B/NMDARs exhibit age- and activation-dependent anticonvulsant action at early postnatal development. In contrast, the influence of Ro 25-6981 on physiological excitability induced by single pulse stimulation of sensorimotor cortex does not depend on age. This compound may thus represent a useful antiepileptic agent in immature brain since its action against ADs prolongation can be observed even 110 min after the single administration of the drug.
650    _2
$a věkové faktory $7 D000367
650    _2
$a zvířata $7 D000818
650    _2
$a antikonvulziva $x aplikace a dávkování $7 D000927
650    _2
$a elektrická stimulace $7 D004558
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a membránové potenciály $x účinky léků $7 D008564
650    _2
$a fenoly $x aplikace a dávkování $7 D010636
650    _2
$a piperidiny $x aplikace a dávkování $7 D010880
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
650    _2
$a receptory N-methyl-D-aspartátu $x antagonisté a inhibitory $7 D016194
650    _2
$a záchvaty $x farmakoterapie $x patofyziologie $7 D012640
650    _2
$a senzorimotorický kortex $x účinky léků $x patofyziologie $7 D066191
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mareš, Pavel $u Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
773    0_
$w MED00000842 $t Brain research bulletin $x 1873-2747 $g Roč. 111, č. - (2015), s. 1-8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25446739 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160122112456 $b ABA008
999    __
$a ok $b bmc $g 1102792 $s 924717
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 111 $c - $d 1-8 $e 20141111 $i 1873-2747 $m Brain research bulletin $n Brain Res Bull $x MED00000842
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...