Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Performance evaluation of image segmentation algorithms on microscopic image data

M. Beneš, B. Zitová,

. 2015 ; 257 (1) : 65-85. [pub] 20140919

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000617

In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000617
003      
CZ-PrNML
005      
20160126102204.0
007      
ta
008      
160108s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/jmi.12186 $2 doi
035    __
$a (PubMed)25233873
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Beneš, Miroslav $u Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
245    10
$a Performance evaluation of image segmentation algorithms on microscopic image data / $c M. Beneš, B. Zitová,
520    9_
$a In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.
650    12
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a počítačové zpracování obrazu $x metody $x normy $7 D007091
650    _2
$a myši $7 D051379
650    12
$a mikroskopie $x metody $7 D008853
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zitová, Barbara
773    0_
$w MED00002805 $t Journal of microscopy $x 1365-2818 $g Roč. 257, č. 1 (2015), s. 65-85
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25233873 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160126102327 $b ABA008
999    __
$a ok $b bmc $g 1102898 $s 924823
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 257 $c 1 $d 65-85 $e 20140919 $i 1365-2818 $m Journal of microscopy $n J Microsc $x MED00002805
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...