-
Je něco špatně v tomto záznamu ?
Performance evaluation of image segmentation algorithms on microscopic image data
M. Beneš, B. Zitová,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
NLK
Medline Complete (EBSCOhost)
od 1998-01-01 do Před 1 rokem
Wiley Free Content
od 1997 do Před 3 lety
PubMed
25233873
DOI
10.1111/jmi.12186
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- mikroskopie * metody MeSH
- myši MeSH
- počítačové zpracování obrazu metody normy MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000617
- 003
- CZ-PrNML
- 005
- 20160126102204.0
- 007
- ta
- 008
- 160108s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/jmi.12186 $2 doi
- 035 __
- $a (PubMed)25233873
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Beneš, Miroslav $u Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
- 245 10
- $a Performance evaluation of image segmentation algorithms on microscopic image data / $c M. Beneš, B. Zitová,
- 520 9_
- $a In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a počítačové zpracování obrazu $x metody $x normy $7 D007091
- 650 _2
- $a myši $7 D051379
- 650 12
- $a mikroskopie $x metody $7 D008853
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zitová, Barbara
- 773 0_
- $w MED00002805 $t Journal of microscopy $x 1365-2818 $g Roč. 257, č. 1 (2015), s. 65-85
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25233873 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126102327 $b ABA008
- 999 __
- $a ok $b bmc $g 1102898 $s 924823
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 257 $c 1 $d 65-85 $e 20140919 $i 1365-2818 $m Journal of microscopy $n J Microsc $x MED00002805
- LZP __
- $a Pubmed-20160108