-
Je něco špatně v tomto záznamu ?
Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells
M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova, J. Tucek, J. Nebesarova, R. Zboril,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- lidé MeSH
- magnetické nanočástice ultrastruktura MeSH
- mezenchymální kmenové buňky metabolismus ultrastruktura MeSH
- mikroskopie elektronová rastrovací metody MeSH
- nanočástice ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000646
- 003
- CZ-PrNML
- 005
- 20160126120055.0
- 007
- ta
- 008
- 160108s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.micron.2014.08.001 $2 doi
- 035 __
- $a (PubMed)25173605
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Havrdova, M $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic. Electronic address: marketa.havrdova@upol.cz.
- 245 10
- $a Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells / $c M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova, J. Tucek, J. Nebesarova, R. Zboril,
- 520 9_
- $a When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetické nanočástice $x ultrastruktura $7 D058185
- 650 _2
- $a mezenchymální kmenové buňky $x metabolismus $x ultrastruktura $7 D059630
- 650 _2
- $a mikroskopie elektronová rastrovací $x metody $7 D008855
- 650 _2
- $a nanočástice $x ultrastruktura $7 D053758
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Polakova, K $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Skopalik, J $u Integrated Center of Cellular Therapy and Regenerative Medicine, ICRC - St. Anne's University Hospital, Pekarska 63, 62500 Brno, Czech Republic.
- 700 1_
- $a Vujtek, M $u Department of Experimental Physics, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Mokdad, A $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Homolkova, M $u Institute of Complex Systems Nove Hrady, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zamek 136, 373 33 Nove Hrady, Czech Republic.
- 700 1_
- $a Tucek, J $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Nebesarova, J $u Institute of Parasitology, Biology Centre, ASCR, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- 700 1_
- $a Zboril, R $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
- 773 0_
- $w MED00006023 $t Micron (Oxford, England 1993) $x 1878-4291 $g Roč. 67, č. - (2014), s. 149-54
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25173605 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160126120219 $b ABA008
- 999 __
- $a ok $b bmc $g 1102927 $s 924852
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 67 $c - $d 149-54 $e 20140813 $i 1878-4291 $m Micron $n Micron $x MED00006023
- LZP __
- $a Pubmed-20160108