• Je něco špatně v tomto záznamu ?

Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells

M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova, J. Tucek, J. Nebesarova, R. Zboril,

. 2014 ; 67 (-) : 149-54. [pub] 20140813

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000646

When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000646
003      
CZ-PrNML
005      
20160126120055.0
007      
ta
008      
160108s2014 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.micron.2014.08.001 $2 doi
035    __
$a (PubMed)25173605
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Havrdova, M $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic. Electronic address: marketa.havrdova@upol.cz.
245    10
$a Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells / $c M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova, J. Tucek, J. Nebesarova, R. Zboril,
520    9_
$a When developing new nanoparticles for bio-applications, it is important to fully characterize the nanoparticle's behavior in biological systems. The most common techniques employed for mapping nanoparticles inside cells include transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). These techniques entail passing an electron beam through a thin specimen. STEM or TEM imaging is often used for the detection of nanoparticles inside cellular organelles. However, lengthy sample preparation is required (i.e., fixation, dehydration, drying, resin embedding, and cutting). In the present work, a new matrix (FTO glass) for biological samples was used and characterized by field emission scanning electron microscopy (FE-SEM) to generate images comparable to those obtained by TEM. Using FE-SEM, nanoparticle images were acquired inside endo/lysosomes without disruption of the cellular shape. Furthermore, the initial steps of nanoparticle incorporation into the cells were captured. In addition, the conductive FTO glass endowed the sample with high stability under the required accelerating voltage. Owing to these features of the sample, further analyses could be performed (material contrast and energy-dispersive X-ray spectroscopy (EDS)), which confirmed the presence of nanoparticles inside the cells. The results showed that FE-SEM can enable detailed characterization of nanoparticles in endosomes without the need for contrast staining or metal coating of the sample. Images showing the intracellular distribution of nanoparticles together with cellular morphology can give important information on the biocompatibility and demonstrate the potential of nanoparticle utilization in medicine.
650    _2
$a lidé $7 D006801
650    _2
$a magnetické nanočástice $x ultrastruktura $7 D058185
650    _2
$a mezenchymální kmenové buňky $x metabolismus $x ultrastruktura $7 D059630
650    _2
$a mikroskopie elektronová rastrovací $x metody $7 D008855
650    _2
$a nanočástice $x ultrastruktura $7 D053758
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Polakova, K $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Skopalik, J $u Integrated Center of Cellular Therapy and Regenerative Medicine, ICRC - St. Anne's University Hospital, Pekarska 63, 62500 Brno, Czech Republic.
700    1_
$a Vujtek, M $u Department of Experimental Physics, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Mokdad, A $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Homolkova, M $u Institute of Complex Systems Nove Hrady, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zamek 136, 373 33 Nove Hrady, Czech Republic.
700    1_
$a Tucek, J $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
700    1_
$a Nebesarova, J $u Institute of Parasitology, Biology Centre, ASCR, v.v.i., Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
700    1_
$a Zboril, R $u Regional Centre of Advanced Technologies and Materials, Department of Experimental Physics and Physical Chemistry, Faculty of Science, Palacky University, 17 listopadu 12, 771 46 Olomouc, Czech Republic.
773    0_
$w MED00006023 $t Micron (Oxford, England 1993) $x 1878-4291 $g Roč. 67, č. - (2014), s. 149-54
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25173605 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160126120219 $b ABA008
999    __
$a ok $b bmc $g 1102927 $s 924852
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 67 $c - $d 149-54 $e 20140813 $i 1878-4291 $m Micron $n Micron $x MED00006023
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...