-
Something wrong with this record ?
Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes
J. Jablonsky, D. Schwarz, M. Hagemann,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2006
Free Medical Journals
from 2006
Public Library of Science (PLoS)
from 2006
PubMed Central
from 2006
Europe PubMed Central
from 2006
ProQuest Central
from 2006-12-01
Open Access Digital Library
from 2006-01-01
Open Access Digital Library
from 2006-10-01
Open Access Digital Library
from 2006-01-01
Medline Complete (EBSCOhost)
from 2008-01-01
Nursing & Allied Health Database (ProQuest)
from 2006-12-01
Health & Medicine (ProQuest)
from 2006-12-01
Public Health Database (ProQuest)
from 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
from 2006
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Bacterial Proteins chemistry physiology MeSH
- Glyceraldehyde-3-Phosphate Dehydrogenases chemistry physiology MeSH
- Homeostasis MeSH
- Isoenzymes chemistry physiology MeSH
- Kinetics MeSH
- NADP metabolism MeSH
- Carbon Dioxide MeSH
- Oxidation-Reduction MeSH
- Synechococcus enzymology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate, the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their protective role against toxic photorespiratory intermediates.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16000665
- 003
- CZ-PrNML
- 005
- 20160108120820.0
- 007
- ta
- 008
- 160108s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0105292 $2 doi
- 035 __
- $a (PubMed)25127487
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jablonsky, Jiri $u Laboratory of Experimental Complex Systems, FFPW, University of South Bohemia, České Budějovice, Czech Republic.
- 245 10
- $a Multi-level kinetic model explaining diverse roles of isozymes in prokaryotes / $c J. Jablonsky, D. Schwarz, M. Hagemann,
- 520 9_
- $a Current standard methods for kinetic and genomic modeling cannot provide deep insight into metabolic regulation. Here, we developed and evaluated a multi-scale kinetic modeling approach applicable to any prokaryote. Specifically, we highlight the primary metabolism of the cyanobacterium Synechococcus elongatus PCC 7942. The model bridges metabolic data sets from cells grown at different CO2 conditions by integrating transcriptomic data and isozymes. Identification of the regulatory roles of isozymes allowed the calculation and explanation of the absolute metabolic concentration of 3-phosphoglycerate. To demonstrate that this method can characterize any isozyme, we determined the function of two glycolytic glyceraldehyde-3-phosphate dehydrogenases: one co-regulates high concentrations of the 3-phosphoglycerate, the other shifts the bifurcation point in hexose regulation, and both improve biomass production. Moreover, the regulatory roles of multiple phosphoglycolate phosphatases were defined for varying (non-steady) CO2 conditions, suggesting their protective role against toxic photorespiratory intermediates.
- 650 _2
- $a adenosintrifosfát $x metabolismus $7 D000255
- 650 _2
- $a bakteriální proteiny $x chemie $x fyziologie $7 D001426
- 650 _2
- $a oxid uhličitý $7 D002245
- 650 _2
- $a glyceraldehyd-3-fosfátdehydrogenasy $x chemie $x fyziologie $7 D005987
- 650 _2
- $a homeostáza $7 D006706
- 650 _2
- $a izoenzymy $x chemie $x fyziologie $7 D007527
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a NADP $x metabolismus $7 D009249
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a Synechococcus $x enzymologie $7 D046940
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Schwarz, Doreen $u Department of Plant Physiology, University of Rostock, Rostock, Germany.
- 700 1_
- $a Hagemann, Martin $u Department of Plant Physiology, University of Rostock, Rostock, Germany.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 9, č. 8 (2014), s. e105292
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25127487 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160108 $b ABA008
- 991 __
- $a 20160108120930 $b ABA008
- 999 __
- $a ok $b bmc $g 1102946 $s 924871
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 9 $c 8 $d e105292 $e 20140815 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20160108