Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin

C. Chen, I. Letnik, Y. Hacham, P. Dobrev, BH. Ben-Daniel, R. Vanková, R. Amir, G. Miller,

. 2014 ; 166 (1) : 370-83. [pub] 20140721

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16000690

A seed's ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16000690
003      
CZ-PrNML
005      
20160127101754.0
007      
ta
008      
160108s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.114.245324 $2 doi
035    __
$a (PubMed)25049361
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Chen, Changming $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
245    10
$a ASCORBATE PEROXIDASE6 protects Arabidopsis desiccating and germinating seeds from stress and mediates cross talk between reactive oxygen species, abscisic acid, and auxin / $c C. Chen, I. Letnik, Y. Hacham, P. Dobrev, BH. Ben-Daniel, R. Vanková, R. Amir, G. Miller,
520    9_
$a A seed's ability to properly germinate largely depends on its oxidative poise. The level of reactive oxygen species (ROS) in Arabidopsis (Arabidopsis thaliana) is controlled by a large gene network, which includes the gene coding for the hydrogen peroxide-scavenging enzyme, cytosolic ASCORBATE PEROXIDASE6 (APX6), yet its specific function has remained unknown. In this study, we show that seeds lacking APX6 accumulate higher levels of ROS, exhibit increased oxidative damage, and display reduced germination on soil under control conditions and that these effects are further exacerbated under osmotic, salt, or heat stress. In addition, ripening APX6-deficient seeds exposed to heat stress displayed reduced germination vigor. This, together with the increased abundance of APX6 during late stages of maturation, indicates that APX6 activity is critical for the maturation-drying phase. Metabolic profiling revealed an altered activity of the tricarboxylic acid cycle, changes in amino acid levels, and elevated metabolism of abscisic acid (ABA) and auxin in drying apx6 mutant seeds. Further germination assays showed an impaired response of the apx6 mutants to ABA and to indole-3-acetic acid. Relative suppression of abscisic acid insensitive3 (ABI3) and ABI5 expression, two of the major ABA signaling downstream components controlling dormancy, suggested that an alternative signaling route inhibiting germination was activated. Thus, our study uncovered a new role for APX6, in protecting mature desiccating and germinating seeds from excessive oxidative damage, and suggested that APX6 modulate the ROS signal cross talk with hormone signals to properly execute the germination program in Arabidopsis.
650    _2
$a kyselina abscisová $x metabolismus $7 D000040
650    _2
$a Arabidopsis $x fyziologie $7 D017360
650    _2
$a proteiny huseníčku $x metabolismus $7 D029681
650    _2
$a askorbátperoxidasa $x metabolismus $7 D060387
650    _2
$a exprese genu $7 D015870
650    12
$a klíčení $7 D018525
650    _2
$a vysoká teplota $7 D006358
650    _2
$a kyseliny indoloctové $x metabolismus $7 D007210
650    _2
$a mutace $7 D009154
650    12
$a oxidační stres $7 D018384
650    _2
$a reaktivní formy kyslíku $x metabolismus $7 D017382
650    _2
$a interakce mezi receptory a ligandy $7 D020239
650    _2
$a voda $x fyziologie $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Letnik, Ilya $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
700    1_
$a Hacham, Yael $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
700    1_
$a Dobrev, Petre $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
700    1_
$a Ben-Daniel, Bat-Hen $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
700    1_
$a Vanková, Radomíra $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.).
700    1_
$a Amir, Rachel $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.). $7 gn_A_00005611
700    1_
$a Miller, Gad $u Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (C.C., I.L., B.-H.B.-D., G.M.);Laboratory of Plant Science, Migal Galilee Research Institute, Kiryat Shmona 12100, Israel (Y.H., R.A.);Tel Hai College, Upper Galilee 12210, Israel (Y.H., R.A.); andInstitute of Experimental Botany Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic (R.V., P.D.) gad.miller@biu.ac.il.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 166, č. 1 (2014), s. 370-83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25049361 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160108 $b ABA008
991    __
$a 20160127101918 $b ABA008
999    __
$a ok $b bmc $g 1102971 $s 924896
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 166 $c 1 $d 370-83 $e 20140721 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
LZP    __
$a Pubmed-20160108

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...