-
Je něco špatně v tomto záznamu ?
The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression
M. Krüger, FP. Teste, E. Laliberté, H. Lambers, M. Coghlan, G. Zemunik, M. Bunce,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26332084
DOI
10.1111/mec.13363
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- DNA fungální genetika MeSH
- ekosystém * MeSH
- fosfor chemie MeSH
- fylogeneze MeSH
- kořeny rostlin mikrobiologie MeSH
- mykorhiza klasifikace genetika MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
Ecosystem retrogression following long-term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2-million-year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60-fold decline in total soil P concentration, with the oldest stage representing some of the most severely P-impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P-rich soils, greatest on relatively old (~120 000 years) low-P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16009982
- 003
- CZ-PrNML
- 005
- 20160415121517.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/mec.13363 $2 doi
- 024 7_
- $a 10.1111/mec.13363 $2 doi
- 035 __
- $a (PubMed)26332084
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Krüger, Manuela $u Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, Průhonice, CZ-252 43, Czech Republic.
- 245 14
- $a The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression / $c M. Krüger, FP. Teste, E. Laliberté, H. Lambers, M. Coghlan, G. Zemunik, M. Bunce,
- 520 9_
- $a Ecosystem retrogression following long-term pedogenesis is attributed to phosphorus (P) limitation of primary productivity. Arbuscular mycorrhizal fungi (AMF) enhance P acquisition for most terrestrial plants, but it has been suggested that this strategy becomes less effective in strongly weathered soils with extremely low P availability. Using next generation sequencing of the large subunit ribosomal RNA gene in roots and soil, we compared the composition and diversity of AMF communities in three contrasting stages of a retrogressive >2-million-year dune chronosequence in a global biodiversity hotspot. This chronosequence shows a ~60-fold decline in total soil P concentration, with the oldest stage representing some of the most severely P-impoverished soils found in any terrestrial ecosystem. The richness of AMF operational taxonomic units was low on young (1000's of years), moderately P-rich soils, greatest on relatively old (~120 000 years) low-P soils, and low again on the oldest (>2 000 000 years) soils that were lowest in P availability. A similar decline in AMF phylogenetic diversity on the oldest soils occurred, despite invariant host plant diversity and only small declines in host cover along the chronosequence. Differences in AMF community composition were greatest between the youngest and the two oldest soils, and this was best explained by differences in soil P concentrations. Our results point to a threshold in soil P availability during ecosystem regression below which AMF diversity declines, suggesting environmental filtering of AMF insufficiently adapted to extremely low P availability.
- 650 12
- $a biodiverzita $7 D044822
- 650 _2
- $a DNA fungální $x genetika $7 D004271
- 650 12
- $a ekosystém $7 D017753
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a mykorhiza $x klasifikace $x genetika $7 D038821
- 650 _2
- $a fosfor $x chemie $7 D010758
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a kořeny rostlin $x mikrobiologie $7 D018517
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a půda $x chemie $7 D012987
- 650 12
- $a půdní mikrobiologie $7 D012988
- 651 _2
- $a Austrálie $7 D001315
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Teste, François P $u School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia. Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950 (5700), San Luis, Argentina.
- 700 1_
- $a Laliberté, Etienne $u School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia. Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, QC, H1X 2B2, Canada.
- 700 1_
- $a Lambers, Hans $u School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia.
- 700 1_
- $a Coghlan, Megan $u Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.
- 700 1_
- $a Zemunik, Graham $u School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia. Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama.
- 700 1_
- $a Bunce, Michael $u Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, Kent Street, Perth, WA, 6845, Australia.
- 773 0_
- $w MED00006323 $t Molecular ecology $x 1365-294X $g Roč. 24, č. 19 (2015), s. 4912-30
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26332084 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415121602 $b ABA008
- 999 __
- $a ok $b bmc $g 1113411 $s 934350
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 24 $c 19 $d 4912-30 $i 1365-294X $m Molecular ecology $n Mol Ecol $x MED00006323
- LZP __
- $a Pubmed-20160408