Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants

T. Lukešová, P. Kohout, T. Větrovský, M. Vohník,

. 2015 ; 10 (4) : e0124752. [pub] 20150423

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010281

The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010281
003      
CZ-PrNML
005      
20160902091834.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0124752 $2 doi
024    7_
$a 10.1371/journal.pone.0124752 $2 doi
035    __
$a (PubMed)25905493
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lukešová, Tereza $u Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; Department of Mycorrhizal Symbioses, Institute of Botany ASCR, Průhonice, Czech Republic.
245    14
$a The potential of Dark Septate Endophytes to form root symbioses with ectomycorrhizal and ericoid mycorrhizal middle European forest plants / $c T. Lukešová, P. Kohout, T. Větrovský, M. Vohník,
520    9_
$a The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.--Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.
650    _2
$a endofyty $7 D060026
650    _2
$a mykorhiza $x fyziologie $7 D038821
650    _2
$a smrk $x mikrobiologie $7 D028222
650    _2
$a kořeny rostlin $x mikrobiologie $7 D018517
650    12
$a symbióza $7 D013559
651    _2
$a Evropa $7 D005060
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kohout, Petr $u Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; Department of Mycorrhizal Symbioses, Institute of Botany ASCR, Průhonice, Czech Republic; Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
700    1_
$a Větrovský, Tomáš, $u Laboratory of Environmental Microbiology, Institute of Microbiology ASCR, Prague, Czech Republic. $d 1985- $7 xx0205901
700    1_
$a Vohník, Martin $u Department of Plant Experimental Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; Department of Mycorrhizal Symbioses, Institute of Botany ASCR, Průhonice, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 10, č. 4 (2015), s. e0124752
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25905493 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160902092141 $b ABA008
999    __
$a ok $b bmc $g 1113710 $s 934649
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 10 $c 4 $d e0124752 $e 20150423 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...