Reversing protonation of weakly basic drugs greatly enhances intracellular diffusion and decreases lysosomal sequestration

. 2024 Dec 06 ; 13 () : . [epub] 20241206

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39641975

Grantová podpora
1268/18 Israel Science Foundation
22-20319S Czech Science Foundation

For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.

Před aktualizací

doi: 10.1101/2023.04.19.537456 PubMed

Před aktualizací

doi: 10.7554/eLife.97255.1 PubMed

Před aktualizací

doi: 10.7554/eLife.97255.2 PubMed

Zobrazit více v PubMed

Asokan A, Cho MJ. Exploitation of intracellular pH gradients in the cellular delivery of macromolecules. Journal of Pharmaceutical Sciences. 2002;91:903–913. doi: 10.1002/jps.10095. PubMed DOI

Bandyopadhyay D, Cyphersmith A, Zapata JA, Kim YJ, Payne CK. Lysosome transport as a function of lysosome diameter. PLOS ONE. 2014;9:e86847. doi: 10.1371/journal.pone.0086847. PubMed DOI PMC

Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S, Wong MHL, Leung S, Miller AB, Baker DA, Alano P, Paine MJI, Bhatia SN, O’Neill PM, Ward SA, Biagini GA. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nature Communications. 2019;10:1–9. doi: 10.1038/s41467-019-11239-0. PubMed DOI PMC

Charifson PS, Walters WP. Acidic and basic drugs in medicinal chemistry: a perspective. Journal of Medicinal Chemistry. 2014;57:9701–9717. doi: 10.1021/jm501000a. PubMed DOI

de Duve C, Poole B, Trouet A, Tulkens P. Commentary. Biochemical Pharmacology. 1974;23:2495–2531. doi: 10.1016/0006-2952(74)90174-9. PubMed DOI

Dey D, Marciano S, Nunes-Alves A, Kiss V, Wade RC, Schreiber G. Line-FRAP, a versatile method to measure diffusion rates in vitro and in vivo. Journal of Molecular Biology. 2021;433:166898. doi: 10.1016/j.jmb.2021.166898. PubMed DOI

Dey D, Nunes-Alves A, Wade RC, Schreiber G. Diffusion of small molecule drugs is affected by surface interactions and crowder proteins. iScience. 2022;25:105088. doi: 10.1016/j.isci.2022.105088. PubMed DOI PMC

Di L, Artursson P, Avdeef A, Ecker GF, Faller B, Fischer H, Houston JB, Kansy M, Kerns EH, Krämer SD, Lennernäs H, Sugano K. Evidence-based approach to assess passive diffusion and carrier-mediated drug transport. Drug Discovery Today. 2012;17:905–912. doi: 10.1016/j.drudis.2012.03.015. PubMed DOI

Dobson PD, Kell DB. Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nature Reviews. Drug Discovery. 2008;7:205–220. doi: 10.1038/nrd2438. PubMed DOI

Ehsanian R, Van Waes C, Feller SM. Beyond DNA binding - A review of the potential mechanisms mediating quinacrine’s therapeutic activities in parasitic infections, inflammation, and cancers. Cell Communication and Signaling. 2011;9:1–18. doi: 10.1186/1478-811X-9-13. PubMed DOI PMC

Ellis RJ. Macromolecular crowding: obvious but underappreciated trends. Biochemical Sciences. 2001;26:597–604. doi: 10.1016/S0968-0004(01)01938-7. PubMed DOI

Fulton AB. How crowded is the cytoplasm? Cell. 1982;30:345–347. doi: 10.1016/0092-8674(82)90231-8. PubMed DOI

Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, Assaraf YG, Pili R, Peters GJ, Verheul HMW. Lysosomal sequestration of sunitinib: A novel mechanism of drug resistance. Clinical Cancer Research. 2011;17:7337–7346. doi: 10.1158/1078-0432.CCR-11-1667. PubMed DOI PMC

Hiruma H, Katakura T, Takenami T, Igawa S, Kanoh M, Fujimura T, Kawakami T. Vesicle disruption, plasma membrane bleb formation, and acute cell death caused by illumination with blue light in acridine orange-loaded malignant melanoma cells. Journal of Photochemistry and Photobiology B. 2007;86:1–8. doi: 10.1016/j.jphotobiol.2006.08.003. PubMed DOI

Ishii H, Shirai T, Makino C, Nishikata T. Mitochondrial inhibitor sodium azide inhibits the reorganization of mitochondria‐rich cytoplasm and the establishment of the anteroposterior axis in ascidian embryo. Development, Growth & Differentiation. 2014;56:175–188. doi: 10.1111/dgd.12117. PubMed DOI

Jampol LM, Cunha-Vaz J. In: Handbook of Experimental Pharmacology. Jampol LM, Cunha-Vaz J, editors. Springer; 1984. Diagnostic agents in ophthalmology: sodium fluorescein and other dyes pharmacology of the eye; pp. 699–714.

Jansen G, Barr H, Kathmann I, Bunni MA, Priest DG, Noordhuis P, Peters GJ, Assaraf YG. Multiple mechanisms of resistance to polyglutamatable and lipophilic antifolates in mammalian cells: Role of increased folylpolyglutamylation. Mol Pharmocol. 1999;55:761–769. PubMed

Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. Journal of Pharmaceutical Sciences. 2007;96:729–746. doi: 10.1002/jps.20792. PubMed DOI

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Long X, Zhang X, Chen Q, Liu M, Xiang Y, Yang Y, Xiao Z, Huang J, Wang X, Liu C, Nan Y, Huang Q. Nucleus-Targeting Phototherapy Nanodrugs for High-Effective Anti-Cancer Treatment. Frontiers in Pharmacology. 2022;13:905375. doi: 10.3389/fphar.2022.905375. PubMed DOI PMC

Madshus IH. Regulation of intracellular pH in eukaryotic cells. Biochemical Journal. 1988;250:1–8. doi: 10.1042/bj2500001. PubMed DOI PMC

Manallack DT. The pK(a) Distribution of Drugs: Application to Drug Discovery. Perspectives in Medicinal Chemistry. 2007;1:25–38. PubMed PMC

Marciano S, Dey D, Listov D, Fleishman SJ, Sonn-Segev A, Mertens H, Busch F, Kim Y, Harvey SR, Wysocki VH, Schreiber G. Protein quaternary structures in solution are a mixture of multiple forms. Chemical Science. 2022;13:11680–11695. doi: 10.1039/D2SC02794A. PubMed DOI PMC

Meanwell NA. Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chemical Research in Toxicology. 2011;24:1420–1456. doi: 10.1021/tx200211v. PubMed DOI

Milo R, Phillips R. Cell Biology by the Numbers. Kindle Unlimited; 2015. DOI

Model MA, Hollembeak JE, Kurokawa M. Macromolecular crowding: a hidden link between cell volume and everything else. Cellular Physiology and Biochemistry. 2021;55:25–40. doi: 10.33594/000000319. PubMed DOI

Neurohr GE, Amon A. Relevance and regulation of cell density. Trends in Cell Biology. 2020;30:213–225. doi: 10.1016/j.tcb.2019.12.006. PubMed DOI PMC

Ngo HX, Garneau-Tsodikova S. What are the drugs of the future? MedChemComm. 2018;9:757–758. doi: 10.1039/C8MD90019A. PubMed DOI PMC

Olliaro P, Mussano P. Amodiaquine for treating malaria cochrane database. Systematic Reviews. 2003;2:1–69. doi: 10.1002/14651858.CD000016. PubMed DOI PMC

Ong SE, Schenone M, Margolin AA, Li X, Do K, Doud MK, Mani DR, Kuai L, Wang X, Wood JL, Tolliday NJ, Koehler AN, Marcaurelle LA, Golub TR, Gould RJ, Schreiber SL, Carr SA. Identifying the proteins to which small-molecule probes and drugs bind in cells. PNAS. 2009;106:4617–4622. doi: 10.1073/pnas.0900191106. PubMed DOI PMC

Poryvai A, Galkin M, Shvadchak V, Slanina T. Red‐shifted water‐soluble BODIPY photocages for visualisation and controllable cellular delivery of signaling lipids. Angewandte Chemie International Edition. 2022;61:e202205855. doi: 10.1002/anie.202205855. PubMed DOI

Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. PNAS. 1976;73:1603–1607. doi: 10.1073/pnas.73.5.1603. PubMed DOI PMC

Proksch E. pH in nature, humans and skin. Dermatol. 2018;45:1044–1052. doi: 10.1111/1346-8138.14489. PubMed DOI

Schreiber SL. Small molecules: the missing link in the central dogma. Nature Chemical Biology. 2005;1:64–66. doi: 10.1038/nchembio0705-64. PubMed DOI

Shenkenberg TD, Hoff DD. Mitoxantrone: a new anticancer drug with significant clinical activity. Annals of Internal Medicine. 1986;105:67. doi: 10.7326/0003-4819-105-1-67. PubMed DOI

Spugnini EP, Citro G, Fais S. Proton pump inhibitors as anti vacuolar-ATPases drugs: A novel anticancer strategy. Journal of Experimental & Clinical Cancer Research. 2010;29:44. doi: 10.1186/1756-9966-29-44. PubMed DOI PMC

Stockwell BR. Exploring biology with small organic molecules. Nature. 2004;432:846–854. doi: 10.1038/nature03196. PubMed DOI PMC

Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, Ecker GF, Faller B, Fischer H, Gerebtzoff G, Lennernaes H, Senner F. Coexistence of passive and carrier-mediated processes in drug transport. Nature Reviews Drug Discovery. 2010;9:597–614. doi: 10.1038/nrd3187. PubMed DOI

Tiwari R, Jain P, Asati S, Haider T, Soni V, Pandey V. State-of-art based approaches for anticancer drug-targeting to nucleus. Journal of Drug Delivery Science and Technology. 2018;48:383–392. doi: 10.1016/j.jddst.2018.10.011. DOI

Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI

Wagman A, Johnson K, Bussiere D. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Current Pharmaceutical Design. 2004;10:1105–1137. doi: 10.2174/1381612043452668. PubMed DOI

Wang R, Wang J, Hassan A, Lee CH, Xie XS, Li X. Molecular basis of V-ATPase inhibition by bafilomycin A1. Nature Communications. 2021;12:1782. doi: 10.1038/s41467-021-22111-5. PubMed DOI PMC

Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. Journal of Biological Chemistry. 1991;266:17707–17712. doi: 10.1016/S0021-9258(19)47429-2. PubMed DOI

Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget. 2015;6:1143–1156. doi: 10.18632/oncotarget.2732. PubMed DOI PMC

Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science. 1998;279:84–88. doi: 10.1126/science.279.5347.84. PubMed DOI

Zotter A, Bäuerle F, Dey D, Kiss V, Schreiber G. Quantifying enzyme activity in living cells. Journal of Biological Chemistry. 2017;292:15838–15848. doi: 10.1074/jbc.M117.792119. PubMed DOI PMC

Zuverink M, Barbieri JT. From GFP to β-lactamase: advancing intact cell imaging for toxins and effectors. Pathogens and Disease. 2015;73:ftv097. doi: 10.1093/femspd/ftv097. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...