• Je něco špatně v tomto záznamu ?

The role of exciton delocalization in the major photosynthetic light-harvesting antenna of plants

C. Ramanan, JM. Gruber, P. Malý, M. Negretti, V. Novoderezhkin, TP. Krüger, T. Mančal, R. Croce, R. van Grondelle,

. 2015 ; 108 (5) : 1047-56.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010465
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1960-01-01 do Před 1 rokem
Free Medical Journals od 1960 do Před 1 rokem
Freely Accessible Science Journals od 1960 do Před 12 měsíci
PubMed Central od 1960 do Před 1 rokem
Europe PubMed Central od 1960 do Před 1 rokem
Open Access Digital Library od 1960-09-01

In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010465
003      
CZ-PrNML
005      
20160412115851.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2015.01.019 $2 doi
024    7_
$a 10.1016/j.bpj.2015.01.019 $2 doi
035    __
$a (PubMed)25762317
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ramanan, Charusheela $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands. Electronic address: c.ramanan@vu.nl.
245    14
$a The role of exciton delocalization in the major photosynthetic light-harvesting antenna of plants / $c C. Ramanan, JM. Gruber, P. Malý, M. Negretti, V. Novoderezhkin, TP. Krüger, T. Mančal, R. Croce, R. van Grondelle,
520    9_
$a In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.
650    _2
$a Arabidopsis $x metabolismus $7 D017360
650    _2
$a proteiny huseníčku $x chemie $x genetika $x metabolismus $7 D029681
650    _2
$a fluorescence $7 D005453
650    _2
$a světlosběrné proteinové komplexy $x chemie $x genetika $x metabolismus $7 D045342
650    _2
$a mutace $7 D009154
650    _2
$a multimerizace proteinu $7 D055503
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Gruber, J Michael $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
700    1_
$a Malý, Pavel $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands; Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Negretti, Marco $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
700    1_
$a Novoderezhkin, Vladimir $u A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
700    1_
$a Krüger, Tjaart P J $u Department of Physics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, South Africa.
700    1_
$a Mančal, Tomáš $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands; Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Croce, Roberta $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.
700    1_
$a van Grondelle, Rienk $u Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands. Electronic address: r.van.grondelle@vu.nl.
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 108, č. 5 (2015), s. 1047-56
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25762317 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412115934 $b ABA008
999    __
$a ok $b bmc $g 1113894 $s 934833
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 108 $c 5 $d 1047-56 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace