• Je něco špatně v tomto záznamu ?

Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography

B. Turoňová, L. Marsalek, T. Davidovič, P. Slusallek,

. 2015 ; 189 (3) : 195-206. [pub] 20150204

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010572

Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010572
003      
CZ-PrNML
005      
20160415103809.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jsb.2015.01.011 $2 doi
024    7_
$a 10.1016/j.jsb.2015.01.011 $2 doi
035    __
$a (PubMed)25659894
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Turoňová, Beata $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; IMPRS-CS, Max-Planck Institute for Informatics, Campus E 1.4, 66123 Saarbrücken, Germany. Electronic address: turonova@cs.uni-saarland.de.
245    10
$a Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography / $c B. Turoňová, L. Marsalek, T. Davidovič, P. Slusallek,
520    9_
$a Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
650    _2
$a algoritmy $7 D000465
650    _2
$a elektronová kryomikroskopie $x metody $7 D020285
650    _2
$a tomografie elektronová $x metody $7 D055032
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a makromolekulární látky $x chemie $7 D046911
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a ribozomy $x chemie $7 D012270
650    12
$a stochastické procesy $7 D013269
655    _2
$a časopisecké články $7 D016428
700    1_
$a Marsalek, Lukas $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Agents and Simulated Reality Group, DFKI GmbH, Campus E 3.4, 66123 Saarbrücken, Germany; Eyen SE, Na Nivách 1043/16, 14100 Prague, Czech Republic.
700    1_
$a Davidovič, Tomáš $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Intel VCI, Campus E 1.1, 66123 Saarbrücken, Germany.
700    1_
$a Slusallek, Philipp $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Agents and Simulated Reality Group, DFKI GmbH, Campus E 3.4, 66123 Saarbrücken, Germany; Intel VCI, Campus E 1.1, 66123 Saarbrücken, Germany.
773    0_
$w MED00002951 $t Journal of structural biology $x 1095-8657 $g Roč. 189, č. 3 (2015), s. 195-206
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25659894 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415103854 $b ABA008
999    __
$a ok $b bmc $g 1114001 $s 934940
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 189 $c 3 $d 195-206 $e 20150204 $i 1095-8657 $m Journal of structural biology $n J Struct Biol $x MED00002951
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...