-
Something wrong with this record ?
Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography
B. Turoňová, L. Marsalek, T. Davidovič, P. Slusallek,
Language English Country United States
Document type Journal Article
- MeSH
- Algorithms MeSH
- Cryoelectron Microscopy methods MeSH
- Macromolecular Substances chemistry MeSH
- Monte Carlo Method MeSH
- Image Processing, Computer-Assisted methods MeSH
- Reproducibility of Results MeSH
- Ribosomes chemistry MeSH
- Stochastic Processes * MeSH
- Electron Microscope Tomography methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Publication type
- Journal Article MeSH
Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
Agents and Simulated Reality Group DFKI GmbH Campus E 3 4 66123 Saarbrücken Germany
Eyen SE Na Nivách 1043 16 14100 Prague Czech Republic
IMPRS CS Max Planck Institute for Informatics Campus E 1 4 66123 Saarbrücken Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010572
- 003
- CZ-PrNML
- 005
- 20160415103809.0
- 007
- ta
- 008
- 160408s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jsb.2015.01.011 $2 doi
- 024 7_
- $a 10.1016/j.jsb.2015.01.011 $2 doi
- 035 __
- $a (PubMed)25659894
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Turoňová, Beata $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; IMPRS-CS, Max-Planck Institute for Informatics, Campus E 1.4, 66123 Saarbrücken, Germany. Electronic address: turonova@cs.uni-saarland.de.
- 245 10
- $a Progressive Stochastic Reconstruction Technique (PSRT) for cryo electron tomography / $c B. Turoňová, L. Marsalek, T. Davidovič, P. Slusallek,
- 520 9_
- $a Cryo Electron Tomography (cryoET) plays an essential role in Structural Biology, as it is the only technique that allows to study the structure of large macromolecular complexes in their close to native environment in situ. The reconstruction methods currently in use, such as Weighted Back Projection (WBP) or Simultaneous Iterative Reconstruction Technique (SIRT), deliver noisy and low-contrast reconstructions, which complicates the application of high-resolution protocols, such as Subtomogram Averaging (SA). We propose a Progressive Stochastic Reconstruction Technique (PSRT) - a novel iterative approach to tomographic reconstruction in cryoET based on Monte Carlo random walks guided by Metropolis-Hastings sampling strategy. We design a progressive reconstruction scheme to suit the conditions present in cryoET and apply it successfully to reconstructions of macromolecular complexes from both synthetic and experimental datasets. We show how to integrate PSRT into SA, where it provides an elegant solution to the region-of-interest problem and delivers high-contrast reconstructions that significantly improve template-based localization without any loss of high-resolution structural information. Furthermore, the locality of SA is exploited to design an importance sampling scheme which significantly speeds up the otherwise slow Monte Carlo approach. Finally, we design a new memory efficient solution for the specimen-level interior problem of cryoET, removing all associated artifacts.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a elektronová kryomikroskopie $x metody $7 D020285
- 650 _2
- $a tomografie elektronová $x metody $7 D055032
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a makromolekulární látky $x chemie $7 D046911
- 650 _2
- $a metoda Monte Carlo $7 D009010
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a ribozomy $x chemie $7 D012270
- 650 12
- $a stochastické procesy $7 D013269
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Marsalek, Lukas $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Agents and Simulated Reality Group, DFKI GmbH, Campus E 3.4, 66123 Saarbrücken, Germany; Eyen SE, Na Nivách 1043/16, 14100 Prague, Czech Republic.
- 700 1_
- $a Davidovič, Tomáš $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Intel VCI, Campus E 1.1, 66123 Saarbrücken, Germany.
- 700 1_
- $a Slusallek, Philipp $u Saarland University, Campus E 1.1, 66123 Saarbrücken, Germany; Agents and Simulated Reality Group, DFKI GmbH, Campus E 3.4, 66123 Saarbrücken, Germany; Intel VCI, Campus E 1.1, 66123 Saarbrücken, Germany.
- 773 0_
- $w MED00002951 $t Journal of structural biology $x 1095-8657 $g Roč. 189, č. 3 (2015), s. 195-206
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25659894 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415103854 $b ABA008
- 999 __
- $a ok $b bmc $g 1114001 $s 934940
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 189 $c 3 $d 195-206 $e 20150204 $i 1095-8657 $m Journal of structural biology $n J Struct Biol $x MED00002951
- LZP __
- $a Pubmed-20160408