-
Je něco špatně v tomto záznamu ?
High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus
W. Muchero, J. Guo, SP. DiFazio, JG. Chen, P. Ranjan, GT. Slavov, LE. Gunter, S. Jawdy, AC. Bryan, R. Sykes, A. Ziebell, J. Klápště, I. Porth, O. Skyba, F. Unda, YA. El-Kassaby, CJ. Douglas, SD. Mansfield, J. Martin, W. Schackwitz, LM. Evans, O....
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000 do 2020
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Open Access Digital Library
od 2000-01-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- alely MeSH
- buněčná stěna genetika MeSH
- celulosa metabolismus MeSH
- fenotyp MeSH
- genetická vazba MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lignin biosyntéza MeSH
- lod skóre MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- Populus genetika MeSH
- rostlinné geny * MeSH
- rostlinné proteiny chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční seřazení MeSH
- transkripční faktory chemie genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
BioEnergy Science Center Oak Ridge National Laboratory Oak Ridge TN 37831 USA
Bioscience Center National Renewable Energy Laboratory 15013 Denver West Parkway Golden CO 80401 USA
Department of Biology West Virginia University Morgantown WV 26506 USA
Department of Botany University of British Columbia Vancouver BC V6T 1Z4 Canada
U S Department of Energy Joint Genome Institute Walnut Creek CA 94598 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010613
- 003
- CZ-PrNML
- 005
- 20160412123327.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12864-015-1215-z $2 doi
- 024 7_
- $a 10.1186/s12864-015-1215-z $2 doi
- 035 __
- $a (PubMed)25613058
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Muchero, Wellington $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. mucherow@ornl.gov.
- 245 10
- $a High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus / $c W. Muchero, J. Guo, SP. DiFazio, JG. Chen, P. Ranjan, GT. Slavov, LE. Gunter, S. Jawdy, AC. Bryan, R. Sykes, A. Ziebell, J. Klápště, I. Porth, O. Skyba, F. Unda, YA. El-Kassaby, CJ. Douglas, SD. Mansfield, J. Martin, W. Schackwitz, LM. Evans, O. Czarnecki, GA. Tuskan,
- 520 9_
- $a BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
- 650 _2
- $a alely $7 D000483
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a buněčná stěna $x genetika $7 D002473
- 650 _2
- $a celulosa $x metabolismus $7 D002482
- 650 _2
- $a mapování chromozomů $7 D002874
- 650 12
- $a rostlinné geny $7 D017343
- 650 _2
- $a genetická vazba $7 D008040
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a lignin $x biosyntéza $7 D008031
- 650 _2
- $a lod skóre $7 D008126
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a rostlinné proteiny $x chemie $x genetika $7 D010940
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a Populus $x genetika $7 D032107
- 650 _2
- $a lokus kvantitativního znaku $7 D040641
- 650 _2
- $a sekvenční seřazení $7 D016415
- 650 _2
- $a transkripční faktory $x chemie $x genetika $7 D014157
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Guo, Jianjun $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. jianjun@stanford.edu. Current address: Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA. jianjun@stanford.edu.
- 700 1_
- $a DiFazio, Stephen P $u Department of Biology, West Virginia University, Morgantown, WV, 26506, USA. stephen.difazio@mail.wvu.edu.
- 700 1_
- $a Chen, Jin-Gui $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. chenj@ornl.gov.
- 700 1_
- $a Ranjan, Priya $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. ranjanp@ornl.gov.
- 700 1_
- $a Slavov, Gancho T $u Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK. gts@aber.ac.uk.
- 700 1_
- $a Gunter, Lee E $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. gunterle@ornl.gov.
- 700 1_
- $a Jawdy, Sara $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. jawdys@ornl.gov.
- 700 1_
- $a Bryan, Anthony C $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. bryanac@ornl.gov.
- 700 1_
- $a Sykes, Robert $u Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA. Robert.Sykes@nrel.gov.
- 700 1_
- $a Ziebell, Angela $u Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA. angelaziebell@hotmail.com.
- 700 1_
- $a Klápště, Jaroslav $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. jklapste@mail.ubc.ca. Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic. jklapste@mail.ubc.ca.
- 700 1_
- $a Porth, Ilga $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. porth@mail.ubc.ca.
- 700 1_
- $a Skyba, Oleksandr $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. askyba@gmail.com.
- 700 1_
- $a Unda, Faride $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. farideu@interchange.ubc.ca.
- 700 1_
- $a El-Kassaby, Yousry A $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. y.el-kassaby@ubc.ca.
- 700 1_
- $a Douglas, Carl J $u Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. carl.douglas@ubc.ca.
- 700 1_
- $a Mansfield, Shawn D $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. shawn.mansfield@ubc.ca.
- 700 1_
- $a Martin, Joel $u U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA. j_martin@lbl.gov.
- 700 1_
- $a Schackwitz, Wendy $u U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA. WSSchackwitz@lbl.gov.
- 700 1_
- $a Evans, Luke M $u Department of Biology, West Virginia University, Morgantown, WV, 26506, USA. Luke.Evans@mail.wvu.edu.
- 700 1_
- $a Czarnecki, Olaf $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. olaf.czarnecki@gmx.de.
- 700 1_
- $a Tuskan, Gerald A $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. tuskanga@ornl.gov.
- 773 0_
- $w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 16, č. - (2015), s. 24
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25613058 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160412123410 $b ABA008
- 999 __
- $a ok $b bmc $g 1114042 $s 934981
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 16 $c - $d 24 $e 20150123 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
- LZP __
- $a Pubmed-20160408