• Je něco špatně v tomto záznamu ?

High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

W. Muchero, J. Guo, SP. DiFazio, JG. Chen, P. Ranjan, GT. Slavov, LE. Gunter, S. Jawdy, AC. Bryan, R. Sykes, A. Ziebell, J. Klápště, I. Porth, O. Skyba, F. Unda, YA. El-Kassaby, CJ. Douglas, SD. Mansfield, J. Martin, W. Schackwitz, LM. Evans, O....

. 2015 ; 16 (-) : 24. [pub] 20150123

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010613

BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010613
003      
CZ-PrNML
005      
20160412123327.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12864-015-1215-z $2 doi
024    7_
$a 10.1186/s12864-015-1215-z $2 doi
035    __
$a (PubMed)25613058
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Muchero, Wellington $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. mucherow@ornl.gov.
245    10
$a High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus / $c W. Muchero, J. Guo, SP. DiFazio, JG. Chen, P. Ranjan, GT. Slavov, LE. Gunter, S. Jawdy, AC. Bryan, R. Sykes, A. Ziebell, J. Klápště, I. Porth, O. Skyba, F. Unda, YA. El-Kassaby, CJ. Douglas, SD. Mansfield, J. Martin, W. Schackwitz, LM. Evans, O. Czarnecki, GA. Tuskan,
520    9_
$a BACKGROUND: QTL cloning for the discovery of genes underlying polygenic traits has historically been cumbersome in long-lived perennial plants like Populus. Linkage disequilibrium-based association mapping has been proposed as a cloning tool, and recent advances in high-throughput genotyping and whole-genome resequencing enable marker saturation to levels sufficient for association mapping with no a priori candidate gene selection. Here, multiyear and multienvironment evaluation of cell wall phenotypes was conducted in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree and two partially overlapping populations of unrelated P. trichocarpa genotypes using pyrolysis molecular beam mass spectrometry, saccharification, and/ or traditional wet chemistry. QTL mapping was conducted using a high-density genetic map with 3,568 SNP markers. As a fine-mapping approach, chromosome-wide association mapping targeting a QTL hot-spot on linkage group XIV was performed in the two P. trichocarpa populations. Both populations were genotyped using the 34 K Populus Infinium SNP array and whole-genome resequencing of one of the populations facilitated marker-saturation of candidate intervals for gene identification. RESULTS: Five QTLs ranging in size from 0.6 to 1.8 Mb were mapped on linkage group XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6-carbon sugars using the mapping pedigree. Six candidate loci exhibiting significant associations with phenotypes were identified within QTL intervals. These associations were reproducible across multiple environments, two independent genotyping platforms, and different plant growth stages. cDNA sequencing for allelic variants of three of the six loci identified polymorphisms leading to variable length poly glutamine (PolyQ) stretch in a transcription factor annotated as an ANGUSTIFOLIA C-terminus Binding Protein (CtBP) and premature stop codons in a KANADI transcription factor as well as a protein kinase. Results from protoplast transient expression assays suggested that each of the polymorphisms conferred allelic differences in the activation of cellulose, hemicelluloses, and lignin pathway marker genes. CONCLUSION: This study illustrates the utility of complementary QTL and association mapping as tools for gene discovery with no a priori candidate gene selection. This proof of concept in a perennial organism opens up opportunities for discovery of novel genetic determinants of economically important but complex traits in plants.
650    _2
$a alely $7 D000483
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a buněčná stěna $x genetika $7 D002473
650    _2
$a celulosa $x metabolismus $7 D002482
650    _2
$a mapování chromozomů $7 D002874
650    12
$a rostlinné geny $7 D017343
650    _2
$a genetická vazba $7 D008040
650    _2
$a genotyp $7 D005838
650    _2
$a lignin $x biosyntéza $7 D008031
650    _2
$a lod skóre $7 D008126
650    _2
$a fenotyp $7 D010641
650    _2
$a rostlinné proteiny $x chemie $x genetika $7 D010940
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a Populus $x genetika $7 D032107
650    _2
$a lokus kvantitativního znaku $7 D040641
650    _2
$a sekvenční seřazení $7 D016415
650    _2
$a transkripční faktory $x chemie $x genetika $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Guo, Jianjun $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. jianjun@stanford.edu. Current address: Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA. jianjun@stanford.edu.
700    1_
$a DiFazio, Stephen P $u Department of Biology, West Virginia University, Morgantown, WV, 26506, USA. stephen.difazio@mail.wvu.edu.
700    1_
$a Chen, Jin-Gui $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. chenj@ornl.gov.
700    1_
$a Ranjan, Priya $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. ranjanp@ornl.gov.
700    1_
$a Slavov, Gancho T $u Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3EB, UK. gts@aber.ac.uk.
700    1_
$a Gunter, Lee E $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. gunterle@ornl.gov.
700    1_
$a Jawdy, Sara $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. jawdys@ornl.gov.
700    1_
$a Bryan, Anthony C $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. bryanac@ornl.gov.
700    1_
$a Sykes, Robert $u Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA. Robert.Sykes@nrel.gov.
700    1_
$a Ziebell, Angela $u Bioscience Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA. angelaziebell@hotmail.com.
700    1_
$a Klápště, Jaroslav $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. jklapste@mail.ubc.ca. Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21, Praha 6, Czech Republic. jklapste@mail.ubc.ca.
700    1_
$a Porth, Ilga $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. porth@mail.ubc.ca.
700    1_
$a Skyba, Oleksandr $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. askyba@gmail.com.
700    1_
$a Unda, Faride $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. farideu@interchange.ubc.ca.
700    1_
$a El-Kassaby, Yousry A $u Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. y.el-kassaby@ubc.ca.
700    1_
$a Douglas, Carl J $u Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. carl.douglas@ubc.ca.
700    1_
$a Mansfield, Shawn D $u Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada. shawn.mansfield@ubc.ca.
700    1_
$a Martin, Joel $u U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA. j_martin@lbl.gov.
700    1_
$a Schackwitz, Wendy $u U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, 94598, USA. WSSchackwitz@lbl.gov.
700    1_
$a Evans, Luke M $u Department of Biology, West Virginia University, Morgantown, WV, 26506, USA. Luke.Evans@mail.wvu.edu.
700    1_
$a Czarnecki, Olaf $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. olaf.czarnecki@gmx.de.
700    1_
$a Tuskan, Gerald A $u BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. tuskanga@ornl.gov.
773    0_
$w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 16, č. - (2015), s. 24
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25613058 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412123410 $b ABA008
999    __
$a ok $b bmc $g 1114042 $s 934981
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 24 $e 20150123 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...