-
Je něco špatně v tomto záznamu ?
Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato
A. Albacete, E. Cantero-Navarro, DK. Großkinsky, CL. Arias, ME. Balibrea, R. Bru, L. Fragner, ME. Ghanem, Mde L. González, JA. Hernández, C. Martínez-Andújar, E. van der Graaff, W. Weckwerth, G. Zellnig, F. Pérez-Alfocea, T. Roitsch,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1996 do Před 1 rokem
Open Access Digital Library
od 1996-01-01
PubMed
25392479
DOI
10.1093/jxb/eru448
Knihovny.cz E-zdroje
- MeSH
- buněčná stěna enzymologie MeSH
- Chenopodium genetika metabolismus MeSH
- ektopická exprese * MeSH
- fotosyntéza MeSH
- geneticky modifikované rostliny genetika metabolismus MeSH
- invertasa genetika metabolismus MeSH
- listy rostlin metabolismus MeSH
- období sucha * MeSH
- regulace genové exprese u rostlin * MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Solanum lycopersicum enzymologie genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
Department of Fruit Breeding CEBAS CSIC Campus de Espinardo 30100 Murcia Spain
Department of Plant Nutrition CEBAS CSIC Campus de Espinardo 30100 Murcia Spain
Institute of Plant Sciences Department of Plant Physiology University of Graz 8010 Graz Austria
Instituto de Bioquímica Vegetal y Fotosíntesis Universidad de Sevilla CSIC 41092 Sevilla Spain
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010698
- 003
- CZ-PrNML
- 005
- 20160414122913.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/jxb/eru448 $2 doi
- 024 7_
- $a 10.1093/jxb/eru448 $2 doi
- 035 __
- $a (PubMed)25392479
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Albacete, Alfonso $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria. $7 gn_A_00003355
- 245 10
- $a Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato / $c A. Albacete, E. Cantero-Navarro, DK. Großkinsky, CL. Arias, ME. Balibrea, R. Bru, L. Fragner, ME. Ghanem, Mde L. González, JA. Hernández, C. Martínez-Andújar, E. van der Graaff, W. Weckwerth, G. Zellnig, F. Pérez-Alfocea, T. Roitsch,
- 520 9_
- $a Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
- 650 _2
- $a buněčná stěna $x enzymologie $7 D002473
- 650 _2
- $a Chenopodium $x genetika $x metabolismus $7 D027462
- 650 12
- $a období sucha $7 D055864
- 650 12
- $a ektopická exprese $7 D000066630
- 650 12
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a Solanum lycopersicum $x enzymologie $x genetika $x fyziologie $7 D018551
- 650 _2
- $a fotosyntéza $7 D010788
- 650 _2
- $a listy rostlin $x metabolismus $7 D018515
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 650 _2
- $a geneticky modifikované rostliny $x genetika $x metabolismus $7 D030821
- 650 _2
- $a invertasa $x genetika $x metabolismus $7 D043324
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cantero-Navarro, Elena $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
- 700 1_
- $a Großkinsky, Dominik K $u Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark.
- 700 1_
- $a Arias, Cintia L $u Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. $7 gn_A_00008413
- 700 1_
- $a Balibrea, María Encarnación $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
- 700 1_
- $a Bru, Roque $u Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain.
- 700 1_
- $a Fragner, Lena $u Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
- 700 1_
- $a Ghanem, Michel E $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
- 700 1_
- $a González, María de la Cruz $u Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, CSIC, 41092 Sevilla, Spain.
- 700 1_
- $a Hernández, Jose A $u Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
- 700 1_
- $a Martínez-Andújar, Cristina $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain.
- 700 1_
- $a van der Graaff, Eric $u Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark.
- 700 1_
- $a Weckwerth, Wolfram $u Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria.
- 700 1_
- $a Zellnig, Günther $u Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria.
- 700 1_
- $a Pérez-Alfocea, Francisco $u Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain alfocea@cebas.csic.es.
- 700 1_
- $a Roitsch, Thomas $u Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic.
- 773 0_
- $w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 66, č. 3 (2015), s. 863-78
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25392479 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160414122957 $b ABA008
- 999 __
- $a ok $b bmc $g 1114127 $s 935066
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 66 $c 3 $d 863-78 $e 20141111 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
- LZP __
- $a Pubmed-20160408