-
Je něco špatně v tomto záznamu ?
Synthetic birnessites and buserites as heavy metal cation traps and environmental remedies
Kledi Xhaxhiu
Jazyk angličtina Země Česko
Typ dokumentu práce podpořená grantem
NLK
Open Access Digital Library
od 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2014 do 2015
- MeSH
- adsorpce MeSH
- baryum chemie MeSH
- difrakce rentgenového záření MeSH
- iontová výměna MeSH
- kationty MeSH
- minerály * chemie MeSH
- oxidy * chemická syntéza chemie MeSH
- povrchové vlastnosti MeSH
- sloučeniny manganu * chemie MeSH
- sodík chemie MeSH
- stroncium chemie MeSH
- Publikační typ
- práce podpořená grantem MeSH
Microporous Na-birnessite-type manganese oxides are synthesized by oxidation of Mn(OH)2 with K2S2O8 in strong alkaline environment. Subsequent ion-exchange reactions in aqueous solutions containing Sr, Ba promote their incorporation into the layered structural frameworks, which upon further hydration lead to the respective layered Buserites. Chemical composition and surface structure are assessed by X-ray powder diffraction, nitrogen- and argon- sorptiometry. Na-birnessites and Sr-buserites display good crystallinity. Ba-buserites consist mainly of nanocrystals. Their N2 adsorption/desorption isotherms of resemble IV-type isotherms. Integral and differential pore distribution curves obtained by N2-sorptiometry exhibit out-of-layers pores of 4-5 nm and 10-20 nm. Na-birnessites, Sr- and Ba-buserites possess external B.E.T surfaces of 75.6, 49.2 and 93.6 m2/g respectively. Considerable adsorption volumes of 14, 17 cm3/g for P/P0 = 0.05 for Na-birnessites and Ba-buserites are assessed by Ar-sorptiometry. Differential pore distribution curves confirm inner-layer micropores of 5 to 7 Å with a B.E.T specific area of 76.2 m²/g for Na-birnessites and 51.8 m²/g for Ba-buserites. Na-birnessites and Sr-, Ba-buserites possess enhanced ionic exchanging capacity, acting as a “sink” for heavy metal cations such as Fe2+, Fe3+, Co2+, Ni2+, As3+. The retention of U, Cs and Sr radioisotopes by them unfolds their salient anti-pollution potential for soil and subwater ecosystems.
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16016325
- 003
- CZ-PrNML
- 005
- 20160730115944.0
- 007
- cr|cn|
- 008
- 160607s2015 xr d fs 000 0|eng||
- 009
- AR
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Xhaxhiu, Kledi $u Department of Chemistry, Faculty of Natural Sciences, Tirana Albania
- 245 10
- $a Synthetic birnessites and buserites as heavy metal cation traps and environmental remedies / $c Kledi Xhaxhiu
- 520 3_
- $a Microporous Na-birnessite-type manganese oxides are synthesized by oxidation of Mn(OH)2 with K2S2O8 in strong alkaline environment. Subsequent ion-exchange reactions in aqueous solutions containing Sr, Ba promote their incorporation into the layered structural frameworks, which upon further hydration lead to the respective layered Buserites. Chemical composition and surface structure are assessed by X-ray powder diffraction, nitrogen- and argon- sorptiometry. Na-birnessites and Sr-buserites display good crystallinity. Ba-buserites consist mainly of nanocrystals. Their N2 adsorption/desorption isotherms of resemble IV-type isotherms. Integral and differential pore distribution curves obtained by N2-sorptiometry exhibit out-of-layers pores of 4-5 nm and 10-20 nm. Na-birnessites, Sr- and Ba-buserites possess external B.E.T surfaces of 75.6, 49.2 and 93.6 m2/g respectively. Considerable adsorption volumes of 14, 17 cm3/g for P/P0 = 0.05 for Na-birnessites and Ba-buserites are assessed by Ar-sorptiometry. Differential pore distribution curves confirm inner-layer micropores of 5 to 7 Å with a B.E.T specific area of 76.2 m²/g for Na-birnessites and 51.8 m²/g for Ba-buserites. Na-birnessites and Sr-, Ba-buserites possess enhanced ionic exchanging capacity, acting as a “sink” for heavy metal cations such as Fe2+, Fe3+, Co2+, Ni2+, As3+. The retention of U, Cs and Sr radioisotopes by them unfolds their salient anti-pollution potential for soil and subwater ecosystems.
- 650 12
- $a oxidy $x chemická syntéza $x chemie $7 D010087
- 650 12
- $a minerály $x chemie $7 D008903
- 650 _2
- $a iontová výměna $7 D007474
- 650 _2
- $a kationty $7 D002412
- 650 _2
- $a sodík $x chemie $7 D012964
- 650 _2
- $a baryum $x chemie $7 D001464
- 650 _2
- $a stroncium $x chemie $7 D013324
- 650 12
- $a sloučeniny manganu $x chemie $7 D017895
- 650 _2
- $a adsorpce $7 D000327
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 650 _2
- $a difrakce rentgenového záření $7 D014961
- 655 _2
- $a práce podpořená grantem $7 D013485
- 773 0_
- $t Journal of Metallomics and Nanotechnologies $x 2336-3940 $g Roč. 2, č. 3 (2015), s. 23-32 $w MED00185603
- 856 41
- $u http://web2.mendelu.cz/af_239_nanotech/J_Met_Nano/0315/pdf/JMN3-2015-3.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $b online $c 398 $y 4 $z 0
- 990 __
- $a 20160606103820 $b ABA008
- 991 __
- $a 20160730120207 $b ABA008
- 999 __
- $a ok $b bmc $g 1126986 $s 940783
- BAS __
- $a 3 $a 4
- BMC __
- $a 2015 $b 2 $c 3 $d 23-32 $i 2336-3940 $m Journal of Metallomics and Nanotechnologies $x MED00185603
- LZP __
- $c NLK188 $d 20160730 $a NLK 2016-22/pk