• Je něco špatně v tomto záznamu ?

Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots

CL. Baker, P. Petkova, M. Walker, P. Flachs, O. Mihola, Z. Trachtulec, PM. Petkov, K. Paigen,

. 2015 ; 11 (9) : e1005512. [pub] 20150914

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020296

Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020296
003      
CZ-PrNML
005      
20160727101218.0
007      
ta
008      
160722s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pgen.1005512 $2 doi
024    7_
$a 10.1371/journal.pgen.1005512 $2 doi
035    __
$a (PubMed)26368021
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Baker, Christopher L $u Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
245    10
$a Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots / $c CL. Baker, P. Petkova, M. Walker, P. Flachs, O. Mihola, Z. Trachtulec, PM. Petkov, K. Paigen,
520    9_
$a Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.
650    12
$a alely $7 D000483
650    _2
$a zvířata $7 D000818
650    _2
$a poškození DNA $7 D004249
650    _2
$a kompenzace dávky (genetika) $7 D004303
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a heterozygot $7 D006579
650    _2
$a histonlysin-N-methyltransferasa $x genetika $7 D011495
650    _2
$a histony $x genetika $7 D006657
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a lokus kvantitativního znaku $7 D040641
650    12
$a rekombinace genetická $7 D011995
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Petkova, Pavlina $u Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
700    1_
$a Walker, Michael $u Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
700    1_
$a Flachs, Petr $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic.
700    1_
$a Mihola, Ondrej $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic.
700    1_
$a Trachtulec, Zdenek $u Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, v. v. i., Prague, Czech Republic.
700    1_
$a Petkov, Petko M $u Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
700    1_
$a Paigen, Kenneth $u Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine, United States of America.
773    0_
$w MED00008920 $t PLoS genetics $x 1553-7404 $g Roč. 11, č. 9 (2015), s. e1005512
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26368021 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160727101439 $b ABA008
999    __
$a ok $b bmc $g 1154966 $s 944824
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 11 $c 9 $d e1005512 $e 20150914 $i 1553-7404 $m PLoS genetics $n PLoS Genet $x MED00008920
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...