• Je něco špatně v tomto záznamu ?

Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site

JM. Soler, J. Landa, V. Havlova, Y. Tachi, T. Ebina, P. Sardini, M. Siitari-Kauppi, J. Eikenberg, AJ. Martin,

. 2015 ; 179 (-) : 89-101. [pub] 20150606

Jazyk angličtina Země Nizozemsko

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020675

An in situ diffusion experiment was performed at the Grimsel Test Site (Switzerland). Several tracers ((3)H as HTO, (22)Na(+), (134)Cs(+), (131)I(-) with stable I(-) as carrier) were continuously circulated through a packed-off borehole and the decrease in tracer concentrations in the liquid phase was monitored for a period of about 2years. Subsequently, the borehole section was overcored and the tracer profiles in the rock analyzed ((3)H, (22)Na(+), (134)Cs(+)). (3)H and (22)Na(+) showed a similar decrease in activity in the circulation system (slightly larger drop for (3)H). The drop in activity for (134)Cs(+) was much more pronounced. Transport distances in the rock were about 20cm for (3)H, 10cm for (22)Na(+), and 1cm for (134)Cs(+). The dataset (except for (131)I(-) because of complete decay at the end of the experiment) was analyzed with different diffusion-sorption models by different teams (IDAEA-CSIC, UJV-Rez, JAEA) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. From the activity measurements in the rock, it was observed that it was not possible to recover the full tracer activity in the rock (no activity balance when adding the activities in the rock and in the fluid circulation system). A Borehole Disturbed Zone (BDZ) had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2mm) is about the same magnitude than the mean grain size of the quartz and feldspar grains. IDAEA-CSIC and UJV-Rez tried directly to match the results of the in situ experiment, without forcing any laboratory-based parameter values into the models. JAEA conducted a predictive modeling based on laboratory diffusion data and their scaling to in situ conditions. The results from the different codes have been compared, also with results from small-scale laboratory experiments. Outstanding issues to be resolved are the need for a very large capacity factor in the BDZ for (3)H and the difference between apparent diffusion coefficients (Da) from the in situ experiment and out-leaching laboratory tests.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020675
003      
CZ-PrNML
005      
20160801100237.0
007      
ta
008      
160722s2015 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jconhyd.2015.06.002 $2 doi
024    7_
$a 10.1016/j.jconhyd.2015.06.002 $2 doi
035    __
$a (PubMed)26074058
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Soler, Josep M $u IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain. Electronic address: josep.soler@idaea.csic.es.
245    10
$a Comparative modeling of an in situ diffusion experiment in granite at the Grimsel Test Site / $c JM. Soler, J. Landa, V. Havlova, Y. Tachi, T. Ebina, P. Sardini, M. Siitari-Kauppi, J. Eikenberg, AJ. Martin,
520    9_
$a An in situ diffusion experiment was performed at the Grimsel Test Site (Switzerland). Several tracers ((3)H as HTO, (22)Na(+), (134)Cs(+), (131)I(-) with stable I(-) as carrier) were continuously circulated through a packed-off borehole and the decrease in tracer concentrations in the liquid phase was monitored for a period of about 2years. Subsequently, the borehole section was overcored and the tracer profiles in the rock analyzed ((3)H, (22)Na(+), (134)Cs(+)). (3)H and (22)Na(+) showed a similar decrease in activity in the circulation system (slightly larger drop for (3)H). The drop in activity for (134)Cs(+) was much more pronounced. Transport distances in the rock were about 20cm for (3)H, 10cm for (22)Na(+), and 1cm for (134)Cs(+). The dataset (except for (131)I(-) because of complete decay at the end of the experiment) was analyzed with different diffusion-sorption models by different teams (IDAEA-CSIC, UJV-Rez, JAEA) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. From the activity measurements in the rock, it was observed that it was not possible to recover the full tracer activity in the rock (no activity balance when adding the activities in the rock and in the fluid circulation system). A Borehole Disturbed Zone (BDZ) had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2mm) is about the same magnitude than the mean grain size of the quartz and feldspar grains. IDAEA-CSIC and UJV-Rez tried directly to match the results of the in situ experiment, without forcing any laboratory-based parameter values into the models. JAEA conducted a predictive modeling based on laboratory diffusion data and their scaling to in situ conditions. The results from the different codes have been compared, also with results from small-scale laboratory experiments. Outstanding issues to be resolved are the need for a very large capacity factor in the BDZ for (3)H and the difference between apparent diffusion coefficients (Da) from the in situ experiment and out-leaching laboratory tests.
650    _2
$a silikáty hliníku $7 D000538
650    _2
$a radioizotopy cesia $x analýza $7 D002588
650    _2
$a difuze $7 D004058
650    _2
$a radioizotopy jodu $x analýza $7 D007457
650    12
$a teoretické modely $7 D008962
650    _2
$a poréznost $7 D016062
650    _2
$a sloučeniny draslíku $7 D017680
650    12
$a oxid křemičitý $7 D012822
650    _2
$a radioizotopy sodíku $x analýza $7 D012979
650    _2
$a radioaktivní látky znečišťující vodu $x analýza $7 D014875
650    _2
$a chemické znečištění vody $x analýza $7 D014877
651    _2
$a Švýcarsko $7 D013557
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
700    1_
$a Landa, Jiri $u UJV-Rez, Rez 130, 250 68, Czech Republic.
700    1_
$a Havlova, Vaclava $u UJV-Rez, Rez 130, 250 68, Czech Republic. Electronic address: hvl@ujv.cz.
700    1_
$a Tachi, Yukio $u JAEA, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan. Electronic address: tachi.yukio@jaea.go.jp.
700    1_
$a Ebina, Takanori $u JAEA, 4-33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1194, Japan.
700    1_
$a Sardini, Paul $u Université de Poitiers, HYDRASA/IC2MP 4, rue Michel Brunet - TSA 51106, 86073 Poitiers Cedex 9, France. Electronic address: paul.sardini@univ-poitiers.fr.
700    1_
$a Siitari-Kauppi, Marja $u Laboratory of Radiochemistry, Department of Chemistry, A.I.Virtasen Aukio 1, FIN-00014 University of Helsinki, Helsinki, Finland. Electronic address: marja.siitari-kauppi@helsinki.fi.
700    1_
$a Eikenberg, Jost $u Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland. Electronic address: jost.eikenberg@psi.ch.
700    1_
$a Martin, Andrew J $u NAGRA, Hardstrasse 73, Postfach 280, CH-5430 Wettingen, Switzerland. Electronic address: andrew.martin@nagra.ch.
773    0_
$w MED00006582 $t Journal of contaminant hydrology $x 1873-6009 $g Roč. 179, č. - (2015), s. 89-101
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26074058 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160801100505 $b ABA008
999    __
$a ok $b bmc $g 1155345 $s 945203
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 179 $c - $d 89-101 $e 20150606 $i 1873-6009 $m Journal of contaminant hydrology $n J Contam Hydrol $x MED00006582
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...