• Je něco špatně v tomto záznamu ?

Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure

P. Kemppainen, CG. Knight, DK. Sarma, T. Hlaing, A. Prakash, YN. Maung Maung, P. Somboon, J. Mahanta, C. Walton,

. 2015 ; 15 (5) : 1031-45. [pub] 20150121

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16021007

Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16021007
003      
CZ-PrNML
005      
20160727122643.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/1755-0998.12369 $2 doi
024    7_
$a 10.1111/1755-0998.12369 $2 doi
035    __
$a (PubMed)25573196
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Kemppainen, Petri $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK. Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
245    10
$a Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure / $c P. Kemppainen, CG. Knight, DK. Sarma, T. Hlaing, A. Prakash, YN. Maung Maung, P. Somboon, J. Mahanta, C. Walton,
520    9_
$a Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.
650    _2
$a zvířata $7 D000818
650    _2
$a Anopheles $x klasifikace $x genetika $7 D000852
650    12
$a chromozomální inverze $7 D007446
650    _2
$a shluková analýza $7 D016000
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a molekulární evoluce $7 D019143
650    _2
$a populační genetika $x metody $7 D005828
650    12
$a vazebná nerovnováha $7 D015810
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a Smegmamorpha $x klasifikace $x genetika $7 D023701
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Knight, Christopher G $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
700    1_
$a Sarma, Devojit K $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK. Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
700    1_
$a Hlaing, Thaung $u Department of Medical Research (Lower Myanmar), Medical Entomology Research Division, 5 Ziwaka Road, Dagon P.O., Yangon, 11191, Myanmar.
700    1_
$a Prakash, Anil $u Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
700    1_
$a Maung Maung, Yan Naung $u Department of Medical Research (Lower Myanmar), Medical Entomology Research Division, 5 Ziwaka Road, Dagon P.O., Yangon, 11191, Myanmar.
700    1_
$a Somboon, Pradya $u Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
700    1_
$a Mahanta, Jagadish $u Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
700    1_
$a Walton, Catherine $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
773    0_
$w MED00180393 $t Molecular ecology resources $x 1755-0998 $g Roč. 15, č. 5 (2015), s. 1031-45
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25573196 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160727122904 $b ABA008
999    __
$a ok $b bmc $g 1155677 $s 945535
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 15 $c 5 $d 1031-45 $e 20150121 $i 1755-0998 $m Molecular ecology resources $n Mol. ecol. resour. $x MED00180393
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...