-
Je něco špatně v tomto záznamu ?
Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure
P. Kemppainen, CG. Knight, DK. Sarma, T. Hlaing, A. Prakash, YN. Maung Maung, P. Somboon, J. Mahanta, C. Walton,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
25573196
DOI
10.1111/1755-0998.12369
Knihovny.cz E-zdroje
- MeSH
- Anopheles klasifikace genetika MeSH
- chromozomální inverze * MeSH
- jednonukleotidový polymorfismus MeSH
- molekulární evoluce MeSH
- populační genetika metody MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Smegmamorpha klasifikace genetika MeSH
- vazebná nerovnováha * MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16021007
- 003
- CZ-PrNML
- 005
- 20160727122643.0
- 007
- ta
- 008
- 160722s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/1755-0998.12369 $2 doi
- 024 7_
- $a 10.1111/1755-0998.12369 $2 doi
- 035 __
- $a (PubMed)25573196
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kemppainen, Petri $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK. Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 245 10
- $a Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure / $c P. Kemppainen, CG. Knight, DK. Sarma, T. Hlaing, A. Prakash, YN. Maung Maung, P. Somboon, J. Mahanta, C. Walton,
- 520 9_
- $a Recent advances in sequencing allow population-genomic data to be generated for virtually any species. However, approaches to analyse such data lag behind the ability to generate it, particularly in nonmodel species. Linkage disequilibrium (LD, the nonrandom association of alleles from different loci) is a highly sensitive indicator of many evolutionary phenomena including chromosomal inversions, local adaptation and geographical structure. Here, we present linkage disequilibrium network analysis (LDna), which accesses information on LD shared between multiple loci genomewide. In LD networks, vertices represent loci, and connections between vertices represent the LD between them. We analysed such networks in two test cases: a new restriction-site-associated DNA sequence (RAD-seq) data set for Anopheles baimaii, a Southeast Asian malaria vector; and a well-characterized single nucleotide polymorphism (SNP) data set from 21 three-spined stickleback individuals. In each case, we readily identified five distinct LD network clusters (single-outlier clusters, SOCs), each comprising many loci connected by high LD. In A. baimaii, further population-genetic analyses supported the inference that each SOC corresponds to a large inversion, consistent with previous cytological studies. For sticklebacks, we inferred that each SOC was associated with a distinct evolutionary phenomenon: two chromosomal inversions, local adaptation, population-demographic history and geographic structure. LDna is thus a useful exploratory tool, able to give a global overview of LD associated with diverse evolutionary phenomena and identify loci potentially involved. LDna does not require a linkage map or reference genome, so it is applicable to any population-genomic data set, making it especially valuable for nonmodel species.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a Anopheles $x klasifikace $x genetika $7 D000852
- 650 12
- $a chromozomální inverze $7 D007446
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a populační genetika $x metody $7 D005828
- 650 12
- $a vazebná nerovnováha $7 D015810
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a Smegmamorpha $x klasifikace $x genetika $7 D023701
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Knight, Christopher G $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
- 700 1_
- $a Sarma, Devojit K $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK. Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
- 700 1_
- $a Hlaing, Thaung $u Department of Medical Research (Lower Myanmar), Medical Entomology Research Division, 5 Ziwaka Road, Dagon P.O., Yangon, 11191, Myanmar.
- 700 1_
- $a Prakash, Anil $u Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
- 700 1_
- $a Maung Maung, Yan Naung $u Department of Medical Research (Lower Myanmar), Medical Entomology Research Division, 5 Ziwaka Road, Dagon P.O., Yangon, 11191, Myanmar.
- 700 1_
- $a Somboon, Pradya $u Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- 700 1_
- $a Mahanta, Jagadish $u Regional Medical Research Centre, NE (ICMR), Dibrugarh, 786 001, India.
- 700 1_
- $a Walton, Catherine $u Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Manchester, UK.
- 773 0_
- $w MED00180393 $t Molecular ecology resources $x 1755-0998 $g Roč. 15, č. 5 (2015), s. 1031-45
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25573196 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160727122904 $b ABA008
- 999 __
- $a ok $b bmc $g 1155677 $s 945535
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 15 $c 5 $d 1031-45 $e 20150121 $i 1755-0998 $m Molecular ecology resources $n Mol. ecol. resour. $x MED00180393
- LZP __
- $a Pubmed-20160722