-
Something wrong with this record ?
Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state
M. Amaro, R. Šachl, P. Jurkiewicz, A. Coutinho, M. Prieto, M. Hof,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
NLK
Cell Press Free Archives
from 1960-01-01 to 1 year ago
Free Medical Journals
from 1960 to 1 year ago
Freely Accessible Science Journals
from 1960 to 12 months ago
PubMed Central
from 1960 to 1 year ago
Europe PubMed Central
from 1960 to 1 year ago
Open Access Digital Library
from 1960-09-01
- MeSH
- Fluorescent Dyes chemistry MeSH
- Microscopy, Fluorescence methods MeSH
- Kinetics MeSH
- Lipid Bilayers chemistry MeSH
- Fluorescence Resonance Energy Transfer methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16021013
- 003
- CZ-PrNML
- 005
- 20170124161340.0
- 007
- ta
- 008
- 160722s2014 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bpj.2014.10.058 $2 doi
- 024 7_
- $a 10.1016/j.bpj.2014.10.058 $2 doi
- 035 __
- $a (PubMed)25517142
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Amaro, Mariana $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. $7 gn_A_00005285
- 245 10
- $a Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state / $c M. Amaro, R. Šachl, P. Jurkiewicz, A. Coutinho, M. Prieto, M. Hof,
- 520 9_
- $a Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
- 650 _2
- $a rezonanční přenos fluorescenční energie $x metody $7 D031541
- 650 _2
- $a fluorescenční barviva $x chemie $7 D005456
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a lipidové dvojvrstvy $x chemie $7 D008051
- 650 _2
- $a fluorescenční mikroskopie $x metody $7 D008856
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Šachl, Radek $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. $7 xx0210158
- 700 1_
- $a Jurkiewicz, Piotr $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
- 700 1_
- $a Coutinho, Ana $u Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Departamento Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
- 700 1_
- $a Prieto, Manuel $u Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- 700 1_
- $a Hof, Martin $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. Electronic address: martin.hof@jh-inst.cas.cz.
- 773 0_
- $w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 107, č. 12 (2014), s. 2751-60
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25517142 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20170124161455 $b ABA008
- 999 __
- $a ok $b bmc $g 1155683 $s 945541
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 107 $c 12 $d 2751-60 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
- LZP __
- $a Pubmed-20160722