• Je něco špatně v tomto záznamu ?

Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state

M. Amaro, R. Šachl, P. Jurkiewicz, A. Coutinho, M. Prieto, M. Hof,

. 2014 ; 107 (12) : 2751-60.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc16021013
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1960-01-01 do Před 1 rokem
Free Medical Journals od 1960 do Před 1 rokem
Freely Accessible Science Journals od 1960 do Před 12 měsíci
PubMed Central od 1960 do Před 1 rokem
Europe PubMed Central od 1960 do Před 1 rokem
Open Access Digital Library od 1960-09-01
Elsevier Open Access Journals od 1960-09-01 do 2018-02-06
Elsevier Open Archive Journals od 1960-09-01 do Před 1 rokem

Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16021013
003      
CZ-PrNML
005      
20170124161340.0
007      
ta
008      
160722s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2014.10.058 $2 doi
024    7_
$a 10.1016/j.bpj.2014.10.058 $2 doi
035    __
$a (PubMed)25517142
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Amaro, Mariana $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. $7 gn_A_00005285
245    10
$a Time-resolved fluorescence in lipid bilayers: selected applications and advantages over steady state / $c M. Amaro, R. Šachl, P. Jurkiewicz, A. Coutinho, M. Prieto, M. Hof,
520    9_
$a Fluorescence methods are versatile tools for obtaining dynamic and topological information about biomembranes because the molecular interactions taking place in lipid membranes frequently occur on the same timescale as fluorescence emission. The fluorescence intensity decay, in particular, is a powerful reporter of the molecular environment of a fluorophore. The fluorescence lifetime can be sensitive to the local polarity, hydration, viscosity, and/or presence of fluorescence quenchers/energy acceptors within several nanometers of the vicinity of a fluorophore. Illustrative examples of how time-resolved fluorescence measurements can provide more valuable and detailed information about a system than the time-integrated (steady-state) approach will be presented in this review: 1), determination of membrane polarity and mobility using time-dependent spectral shifts; 2), identification of submicroscopic domains by fluorescence lifetime imaging microscopy; 3), elucidation of membrane leakage mechanisms from dye self-quenching assays; and 4), evaluation of nanodomain sizes by time-resolved Förster resonance energy transfer measurements.
650    _2
$a rezonanční přenos fluorescenční energie $x metody $7 D031541
650    _2
$a fluorescenční barviva $x chemie $7 D005456
650    _2
$a kinetika $7 D007700
650    _2
$a lipidové dvojvrstvy $x chemie $7 D008051
650    _2
$a fluorescenční mikroskopie $x metody $7 D008856
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Šachl, Radek $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. $7 xx0210158
700    1_
$a Jurkiewicz, Piotr $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
700    1_
$a Coutinho, Ana $u Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Departamento Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
700    1_
$a Prieto, Manuel $u Centre for Molecular Chemistry and Physics and Instituto de Nanociência e Nanotecnologia, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
700    1_
$a Hof, Martin $u Department of Biophysical Chemistry, J. Heyrovský Institute of Physical Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic. Electronic address: martin.hof@jh-inst.cas.cz.
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 107, č. 12 (2014), s. 2751-60
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25517142 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20170124161455 $b ABA008
999    __
$a ok $b bmc $g 1155683 $s 945541
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 107 $c 12 $d 2751-60 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...