• Something wrong with this record ?

Challenges and Benchmarks in Bioimage Analysis

M. Kozubek,

. 2016 ; 219 (-) : 231-62.

Language English Country Germany

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Similar to the medical imaging community, the bioimaging community has recently realized the need to benchmark various image analysis methods to compare their performance and assess their suitability for specific applications. Challenges sponsored by prestigious conferences have proven to be an effective means of encouraging benchmarking and new algorithm development for a particular type of image data. Bioimage analysis challenges have recently complemented medical image analysis challenges, especially in the case of the International Symposium on Biomedical Imaging (ISBI). This review summarizes recent progress in this respect and describes the general process of designing a bioimage analysis benchmark or challenge, including the proper selection of datasets and evaluation metrics. It also presents examples of specific target applications and biological research tasks that have benefited from these challenges with respect to the performance of automatic image analysis methods that are crucial for the given task. Finally, available benchmarks and challenges in terms of common features, possible classification and implications drawn from the results are analysed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027529
003      
CZ-PrNML
005      
20161018094223.0
007      
ta
008      
161005s2016 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-3-319-28549-8_9 $2 doi
024    7_
$a 10.1007/978-3-319-28549-8_9 $2 doi
035    __
$a (PubMed)27207369
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Kozubek, Michal $u Faculty of Informatics, Centre for Biomedical Image Analysis, Masaryk University, Botanická 68a, Brno, 60200, Czech Republic. kozubek@fi.muni.cz.
245    10
$a Challenges and Benchmarks in Bioimage Analysis / $c M. Kozubek,
520    9_
$a Similar to the medical imaging community, the bioimaging community has recently realized the need to benchmark various image analysis methods to compare their performance and assess their suitability for specific applications. Challenges sponsored by prestigious conferences have proven to be an effective means of encouraging benchmarking and new algorithm development for a particular type of image data. Bioimage analysis challenges have recently complemented medical image analysis challenges, especially in the case of the International Symposium on Biomedical Imaging (ISBI). This review summarizes recent progress in this respect and describes the general process of designing a bioimage analysis benchmark or challenge, including the proper selection of datasets and evaluation metrics. It also presents examples of specific target applications and biological research tasks that have benefited from these challenges with respect to the performance of automatic image analysis methods that are crucial for the given task. Finally, available benchmarks and challenges in terms of common features, possible classification and implications drawn from the results are analysed.
650    _2
$a algoritmy $7 D000465
650    12
$a benchmarking $7 D019985
650    _2
$a databáze faktografické $7 D016208
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $x statistika a číselné údaje $7 D007091
650    _2
$a fluorescenční mikroskopie $x přístrojové vybavení $x metody $x normy $7 D008856
650    _2
$a molekulární zobrazování $x přístrojové vybavení $x metody $x normy $7 D057054
650    _2
$a rozpoznávání automatizované $x statistika a číselné údaje $7 D010363
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
773    0_
$w MED00159471 $t Advances in anatomy, embryology, and cell biology $x 0301-5556 $g Roč. 219, č. - (2016), s. 231-62
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27207369 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161018094628 $b ABA008
999    __
$a ok $b bmc $g 1165843 $s 952159
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 219 $c - $d 231-62 $i 0301-5556 $m Advances in anatomy, embryology, and cell biology $n Adv Anat Embryol Cell Biol $x MED00159471
LZP    __
$a Pubmed-20161005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...