-
Something wrong with this record ?
Transmembrane voltage: Potential to induce lateral microdomains
J. Malinsky, W. Tanner, M. Opekarova,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
- MeSH
- Cell Membrane metabolism physiology MeSH
- Humans MeSH
- Membrane Microdomains chemistry metabolism physiology MeSH
- Membrane Potentials physiology MeSH
- Lipid Metabolism physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16027643
- 003
- CZ-PrNML
- 005
- 20161019105530.0
- 007
- ta
- 008
- 161005s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbalip.2016.02.012 $2 doi
- 024 7_
- $a 10.1016/j.bbalip.2016.02.012 $2 doi
- 035 __
- $a (PubMed)26902513
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Malinsky, Jan $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic. Electronic address: malinsky@biomed.cas.cz.
- 245 10
- $a Transmembrane voltage: Potential to induce lateral microdomains / $c J. Malinsky, W. Tanner, M. Opekarova,
- 520 9_
- $a Lateral segregation of plasma membrane lipids is a generally accepted phenomenon. Lateral lipid microdomains of specific composition, structure and biological functions are established as a result of simultaneous action of several competing mechanisms which contribute to membrane organization. Various lines of evidence support the conclusion that among those mechanisms, the membrane potential plays significant and to some extent unique role. Above all, clear differences in the microdomain structure as revealed by fluorescence microscopy could be recognized between polarized and depolarized membranes. In addition, recent fluorescence spectroscopy experiments reported depolarization-induced changes in a membrane lipid order. In the context of earlier findings showing that plasma membranes of depolarized cells are less susceptible to detergents and the cells less sensitive to antibiotics or antimycotics treatment we discuss a model, in which membrane potential-driven re-organization of the microdomain structure contributes to maintaining membrane integrity during response to stress, pathogen attack and other challenges involving partial depolarization of the plasma membrane. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčná membrána $x metabolismus $x fyziologie $7 D002462
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a metabolismus lipidů $x fyziologie $7 D050356
- 650 _2
- $a membránové mikrodomény $x chemie $x metabolismus $x fyziologie $7 D021962
- 650 _2
- $a membránové potenciály $x fyziologie $7 D008564
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Tanner, Widmar $u Institute of Cell Biology and Plant Physiology, University of Regensburg, 93053 Regensburg, Germany.
- 700 1_
- $a Opekarova, Miroslava $u Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1861, č. 8 Pt B (2016), s. 806-11
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26902513 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161019105935 $b ABA008
- 999 __
- $a ok $b bmc $g 1165957 $s 952273
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 1861 $c 8 Pt B $d 806-11 $e 20160220 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $a Pubmed-20161005