-
Je něco špatně v tomto záznamu ?
Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks
E. Valletta, L. Kučera, L. Prokeš, F. Amato, T. Pivetta, A. Hampl, J. Havel, P. Vaňhara,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
Public Library of Science (PLoS)
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2006-12-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2006-10-01
Medline Complete (EBSCOhost)
od 2008-01-01
Nursing & Allied Health Database (ProQuest)
od 2006-12-01
Health & Medicine (ProQuest)
od 2006-12-01
Public Health Database (ProQuest)
od 2006-12-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
- MeSH
- analýza hlavních komponent MeSH
- buněčné linie MeSH
- hmotnostní spektrometrie metody MeSH
- kalibrace MeSH
- kokultivační techniky MeSH
- lidé MeSH
- lidské embryonální kmenové buňky fyziologie MeSH
- multivariační analýza MeSH
- myši MeSH
- neuronové sítě * MeSH
- odběr biologického vzorku MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
Department of Chemical and Geological Sciences University of Cagliari Monserrato Italy
Department of Chemistry Faculty of Science Masaryk University Brno Czech Republic
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16027712
- 003
- CZ-PrNML
- 005
- 20161005132306.0
- 007
- ta
- 008
- 161005s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pone.0147414 $2 doi
- 024 7_
- $a 10.1371/journal.pone.0147414 $2 doi
- 035 __
- $a (PubMed)26821236
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Valletta, Elisa $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy.
- 245 10
- $a Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks / $c E. Valletta, L. Kučera, L. Prokeš, F. Amato, T. Pivetta, A. Hampl, J. Havel, P. Vaňhara,
- 520 9_
- $a Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a kalibrace $7 D002138
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a kokultivační techniky $7 D018920
- 650 _2
- $a lidské embryonální kmenové buňky $x fyziologie $7 D000066449
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a hmotnostní spektrometrie $x metody $7 D013058
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a multivariační analýza $7 D015999
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a analýza hlavních komponent $7 D025341
- 650 _2
- $a odběr biologického vzorku $7 D013048
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kučera, Lukáš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Prokeš, Lubomír $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Amato, Filippo $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. $7 gn_A_00005301
- 700 1_
- $a Pivetta, Tiziana $u Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy.
- 700 1_
- $a Hampl, Aleš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
- 700 1_
- $a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- 773 0_
- $w MED00180950 $t PloS one $x 1932-6203 $g Roč. 11, č. 1 (2016), s. e0147414
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26821236 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161005132653 $b ABA008
- 999 __
- $a ok $b bmc $g 1166026 $s 952342
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 11 $c 1 $d e0147414 $e 20160128 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
- LZP __
- $a Pubmed-20161005