• Je něco špatně v tomto záznamu ?

Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks

E. Valletta, L. Kučera, L. Prokeš, F. Amato, T. Pivetta, A. Hampl, J. Havel, P. Vaňhara,

. 2016 ; 11 (1) : e0147414. [pub] 20160128

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16027712

Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027712
003      
CZ-PrNML
005      
20161005132306.0
007      
ta
008      
161005s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0147414 $2 doi
024    7_
$a 10.1371/journal.pone.0147414 $2 doi
035    __
$a (PubMed)26821236
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Valletta, Elisa $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy.
245    10
$a Multivariate Calibration Approach for Quantitative Determination of Cell-Line Cross Contamination by Intact Cell Mass Spectrometry and Artificial Neural Networks / $c E. Valletta, L. Kučera, L. Prokeš, F. Amato, T. Pivetta, A. Hampl, J. Havel, P. Vaňhara,
520    9_
$a Cross-contamination of eukaryotic cell lines used in biomedical research represents a highly relevant problem. Analysis of repetitive DNA sequences, such as Short Tandem Repeats (STR), or Simple Sequence Repeats (SSR), is a widely accepted, simple, and commercially available technique to authenticate cell lines. However, it provides only qualitative information that depends on the extent of reference databases for interpretation. In this work, we developed and validated a rapid and routinely applicable method for evaluation of cell culture cross-contamination levels based on mass spectrometric fingerprints of intact mammalian cells coupled with artificial neural networks (ANNs). We used human embryonic stem cells (hESCs) contaminated by either mouse embryonic stem cells (mESCs) or mouse embryonic fibroblasts (MEFs) as a model. We determined the contamination level using a mass spectra database of known calibration mixtures that served as training input for an ANN. The ANN was then capable of correct quantification of the level of contamination of hESCs by mESCs or MEFs. We demonstrate that MS analysis, when linked to proper mathematical instruments, is a tangible tool for unraveling and quantifying heterogeneity in cell cultures. The analysis is applicable in routine scenarios for cell authentication and/or cell phenotyping in general.
650    _2
$a zvířata $7 D000818
650    _2
$a kalibrace $7 D002138
650    _2
$a buněčné linie $7 D002460
650    _2
$a kokultivační techniky $7 D018920
650    _2
$a lidské embryonální kmenové buňky $x fyziologie $7 D000066449
650    _2
$a lidé $7 D006801
650    _2
$a hmotnostní spektrometrie $x metody $7 D013058
650    _2
$a myši $7 D051379
650    _2
$a multivariační analýza $7 D015999
650    12
$a neuronové sítě $7 D016571
650    _2
$a analýza hlavních komponent $7 D025341
650    _2
$a odběr biologického vzorku $7 D013048
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kučera, Lukáš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
700    1_
$a Prokeš, Lubomír $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Amato, Filippo $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. $7 gn_A_00005301
700    1_
$a Pivetta, Tiziana $u Department of Chemical and Geological Sciences, University of Cagliari, Monserrato (CA), Italy.
700    1_
$a Hampl, Aleš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic. International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
700    1_
$a Havel, Josef $u Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Vaňhara, Petr $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 11, č. 1 (2016), s. e0147414
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26821236 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161005132653 $b ABA008
999    __
$a ok $b bmc $g 1166026 $s 952342
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 11 $c 1 $d e0147414 $e 20160128 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...