• Something wrong with this record ?

Constructing general partial differential equations using polynomial and neural networks

L. Zjavka, W. Pedrycz,

. 2016 ; 73 (-) : 58-69. [pub] 20151020

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027988
003      
CZ-PrNML
005      
20161027120850.0
007      
ta
008      
161005s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neunet.2015.10.001 $2 doi
024    7_
$a 10.1016/j.neunet.2015.10.001 $2 doi
035    __
$a (PubMed)26547244
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zjavka, Ladislav $u VŠB-Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science, Department of Computer Science, 17. listopadu 15/2172 Ostrava, Czech Republic. Electronic address: lzjavka@gmail.com.
245    10
$a Constructing general partial differential equations using polynomial and neural networks / $c L. Zjavka, W. Pedrycz,
520    9_
$a Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems.
650    _2
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    _2
$a interpretace statistických dat $7 D003627
650    _2
$a strojové učení $7 D000069550
650    12
$a matematika $7 D008433
650    12
$a neuronové sítě $7 D016571
650    _2
$a nelineární dynamika $7 D017711
650    _2
$a počasí $7 D014887
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pedrycz, Witold $u Department of Electrical & Computer Engineering, University of Alberta, Edmonton T6R 2V4 AB, Canada; Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Systems Research Institute, Polish Academy of Sciences Warsaw, Poland. Electronic address: wpedrycz@ualberta.ca.
773    0_
$w MED00011811 $t Neural networks the official journal of the International Neural Network Society $x 1879-2782 $g Roč. 73, č. - (2016), s. 58-69
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26547244 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161027121307 $b ABA008
999    __
$a ok $b bmc $g 1166302 $s 952618
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 73 $c - $d 58-69 $e 20151020 $i 1879-2782 $m Neural networks $n Neural Netw $x MED00011811
LZP    __
$a Pubmed-20161005

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...