-
Je něco špatně v tomto záznamu ?
High-frequency, precise modification of the tomato genome
T. Čermák, NJ. Baltes, R. Čegan, Y. Zhang, DF. Voytas,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
BioMedCentral
od 2001
Directory of Open Access Journals
od 2000
PubMed Central
od 2001
Europe PubMed Central
od 2001 do 2020
ProQuest Central
od 2015-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Medline Complete (EBSCOhost)
od 2011-02-01
Health & Medicine (ProQuest)
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
Springer Nature OA/Free Journals
od 2000-02-01
- MeSH
- anthokyaniny biosyntéza genetika MeSH
- CRISPR-Cas systémy genetika MeSH
- DNA bakterií genetika MeSH
- dvouřetězcové zlomy DNA MeSH
- Geminiviridae genetika MeSH
- genetické inženýrství MeSH
- genom rostlinný * MeSH
- genový targeting MeSH
- homologní rekombinace genetika MeSH
- oprava DNA genetika MeSH
- Solanum lycopersicum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16027995
- 003
- CZ-PrNML
- 005
- 20161024095955.0
- 007
- ta
- 008
- 161005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13059-015-0796-9 $2 doi
- 024 7_
- $a 10.1186/s13059-015-0796-9 $2 doi
- 035 __
- $a (PubMed)26541286
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Čermák, Tomáš $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. tcermak@umn.edu.
- 245 10
- $a High-frequency, precise modification of the tomato genome / $c T. Čermák, NJ. Baltes, R. Čegan, Y. Zhang, DF. Voytas,
- 520 9_
- $a BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
- 650 _2
- $a anthokyaniny $x biosyntéza $x genetika $7 D000872
- 650 _2
- $a CRISPR-Cas systémy $x genetika $7 D064113
- 650 _2
- $a dvouřetězcové zlomy DNA $7 D053903
- 650 _2
- $a oprava DNA $x genetika $7 D004260
- 650 _2
- $a DNA bakterií $x genetika $7 D004269
- 650 _2
- $a Geminiviridae $x genetika $7 D017791
- 650 _2
- $a genový targeting $7 D018390
- 650 _2
- $a genetické inženýrství $7 D005818
- 650 12
- $a genom rostlinný $7 D018745
- 650 _2
- $a homologní rekombinace $x genetika $7 D059765
- 650 _2
- $a Solanum lycopersicum $x genetika $7 D018551
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Baltes, Nicholas J $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. nick.baltes@calyxt.com.
- 700 1_
- $a Čegan, Radim $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic. cegan@ibp.cz.
- 700 1_
- $a Zhang, Yong $u Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, 216 Main Building No. 4, Section 2, North Jianshe Road, Chengdu, 610054, P.R. China. zhangyong916@uestc.ed.cn.
- 700 1_
- $a Voytas, Daniel F $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. voytas@umn.edu.
- 773 0_
- $w MED00006605 $t Genome biology $x 1474-760X $g Roč. 16, č. - (2015), s. 232
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26541286 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161024100408 $b ABA008
- 999 __
- $a ok $b bmc $g 1166309 $s 952625
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 16 $c - $d 232 $e 20151106 $i 1474-760X $m Genome biology $n Genome Biol $x MED00006605
- LZP __
- $a Pubmed-20161005