Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

High-frequency, precise modification of the tomato genome

T. Čermák, NJ. Baltes, R. Čegan, Y. Zhang, DF. Voytas,

. 2015 ; 16 (-) : 232. [pub] 20151106

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc16027995

BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027995
003      
CZ-PrNML
005      
20161024095955.0
007      
ta
008      
161005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s13059-015-0796-9 $2 doi
024    7_
$a 10.1186/s13059-015-0796-9 $2 doi
035    __
$a (PubMed)26541286
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Čermák, Tomáš $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. tcermak@umn.edu.
245    10
$a High-frequency, precise modification of the tomato genome / $c T. Čermák, NJ. Baltes, R. Čegan, Y. Zhang, DF. Voytas,
520    9_
$a BACKGROUND: The use of homologous recombination to precisely modify plant genomes has been challenging, due to the lack of efficient methods for delivering DNA repair templates to plant cells. Even with the advent of sequence-specific nucleases, which stimulate homologous recombination at predefined genomic sites by creating targeted DNA double-strand breaks, there are only a handful of studies that report precise editing of endogenous genes in crop plants. More efficient methods are needed to modify plant genomes through homologous recombination, ideally without randomly integrating foreign DNA. RESULTS: Here, we use geminivirus replicons to create heritable modifications to the tomato genome at frequencies tenfold higher than traditional methods of DNA delivery (i.e., Agrobacterium). A strong promoter was inserted upstream of a gene controlling anthocyanin biosynthesis, resulting in overexpression and ectopic accumulation of pigments in tomato tissues. More than two-thirds of the insertions were precise, and had no unanticipated sequence modifications. Both TALENs and CRISPR/Cas9 achieved gene targeting at similar efficiencies. Further, the targeted modification was transmitted to progeny in a Mendelian fashion. Even though donor molecules were replicated in the vectors, no evidence was found of persistent extra-chromosomal replicons or off-target integration of T-DNA or replicon sequences. CONCLUSIONS: High-frequency, precise modification of the tomato genome was achieved using geminivirus replicons, suggesting that these vectors can overcome the efficiency barrier that has made gene targeting in plants challenging. This work provides a foundation for efficient genome editing of crop genomes without the random integration of foreign DNA.
650    _2
$a anthokyaniny $x biosyntéza $x genetika $7 D000872
650    _2
$a CRISPR-Cas systémy $x genetika $7 D064113
650    _2
$a dvouřetězcové zlomy DNA $7 D053903
650    _2
$a oprava DNA $x genetika $7 D004260
650    _2
$a DNA bakterií $x genetika $7 D004269
650    _2
$a Geminiviridae $x genetika $7 D017791
650    _2
$a genový targeting $7 D018390
650    _2
$a genetické inženýrství $7 D005818
650    12
$a genom rostlinný $7 D018745
650    _2
$a homologní rekombinace $x genetika $7 D059765
650    _2
$a Solanum lycopersicum $x genetika $7 D018551
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Baltes, Nicholas J $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. nick.baltes@calyxt.com.
700    1_
$a Čegan, Radim $u Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65, Brno, Czech Republic. cegan@ibp.cz.
700    1_
$a Zhang, Yong $u Department of Biotechnology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, 216 Main Building No. 4, Section 2, North Jianshe Road, Chengdu, 610054, P.R. China. zhangyong916@uestc.ed.cn.
700    1_
$a Voytas, Daniel F $u Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, 55455, USA. voytas@umn.edu.
773    0_
$w MED00006605 $t Genome biology $x 1474-760X $g Roč. 16, č. - (2015), s. 232
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26541286 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161024100408 $b ABA008
999    __
$a ok $b bmc $g 1166309 $s 952625
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 232 $e 20151106 $i 1474-760X $m Genome biology $n Genome Biol $x MED00006605
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...