• Je něco špatně v tomto záznamu ?

Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers

R. Burri, A. Nater, T. Kawakami, CF. Mugal, PI. Olason, L. Smeds, A. Suh, L. Dutoit, S. Bureš, LZ. Garamszegi, S. Hogner, J. Moreno, A. Qvarnström, M. Ružić, SA. Sæther, GP. Sætre, J. Török, H. Ellegren,

. 2015 ; 25 (11) : 1656-65. [pub] 20150909

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028238
E-zdroje Online Plný text

NLK Free Medical Journals od 1991 do Před 6 měsíci
Freely Accessible Science Journals od 1991-08-01 do Před 1 rokem
PubMed Central od 1997 do Před 6 měsíci
Europe PubMed Central od 1997 do Před 6 měsíci
Open Access Digital Library od 1991-08-01
Open Access Digital Library od 1991-08-01

Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(xy) and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028238
003      
CZ-PrNML
005      
20161024095149.0
007      
ta
008      
161005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1101/gr.196485.115 $2 doi
024    7_
$a 10.1101/gr.196485.115 $2 doi
035    __
$a (PubMed)26355005
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Burri, Reto $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
245    10
$a Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers / $c R. Burri, A. Nater, T. Kawakami, CF. Mugal, PI. Olason, L. Smeds, A. Suh, L. Dutoit, S. Bureš, LZ. Garamszegi, S. Hogner, J. Moreno, A. Qvarnström, M. Ružić, SA. Sæther, GP. Sætre, J. Török, H. Ellegren,
520    9_
$a Speciation is a continuous process during which genetic changes gradually accumulate in the genomes of diverging species. Recent studies have documented highly heterogeneous differentiation landscapes, with distinct regions of elevated differentiation ("differentiation islands") widespread across genomes. However, it remains unclear which processes drive the evolution of differentiation islands; how the differentiation landscape evolves as speciation advances; and ultimately, how differentiation islands are related to speciation. Here, we addressed these questions based on population genetic analyses of 200 resequenced genomes from 10 populations of four Ficedula flycatcher sister species. We show that a heterogeneous differentiation landscape starts emerging among populations within species, and differentiation islands evolve recurrently in the very same genomic regions among independent lineages. Contrary to expectations from models that interpret differentiation islands as genomic regions involved in reproductive isolation that are shielded from gene flow, patterns of sequence divergence (d(xy) and relative node depth) do not support a major role of gene flow in the evolution of the differentiation landscape in these species. Instead, as predicted by models of linked selection, genome-wide variation in diversity and differentiation can be explained by variation in recombination rate and the density of targets for selection. We thus conclude that the heterogeneous landscape of differentiation in Ficedula flycatchers evolves mainly as the result of background selection and selective sweeps in genomic regions of low recombination. Our results emphasize the necessity of incorporating linked selection as a null model to identify genome regions involved in adaptation and speciation.
650    _2
$a zvířata $7 D000818
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a tok genů $7 D051456
650    12
$a vznik druhů (genetika) $7 D049810
650    _2
$a populační genetika $7 D005828
650    _2
$a genom $7 D016678
650    _2
$a genomika $7 D023281
650    _2
$a genotypizační techniky $7 D060005
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a Passeriformes $x klasifikace $x genetika $7 D046109
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    12
$a rekombinace genetická $7 D011995
650    _2
$a reprodukční izolace $7 D060047
650    12
$a selekce (genetika) $7 D012641
650    _2
$a sekvenční analýza DNA $7 D017422
650    _2
$a druhová specificita $7 D013045
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nater, Alexander $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Kawakami, Takeshi $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Mugal, Carina F $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Olason, Pall I $u Wallenberg Advanced Bioinformatics Infrastructure (WABI), Science for Life Laboratory, Uppsala University, 75123 Uppsala, Sweden;
700    1_
$a Smeds, Linnea $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Suh, Alexander $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Dutoit, Ludovic $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Bureš, Stanislav $u Laboratory of Ornithology, Department of Zoology, Palacky University, 77146 Olomouc, Czech Republic;
700    1_
$a Garamszegi, Laszlo Z $u Department of Evolutionary Ecology, Estación Biológica de Doñana-CSIC, 41092 Seville, Spain;
700    1_
$a Hogner, Silje $u Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway; Natural History Museum, University of Oslo, 0318 Oslo, Norway;
700    1_
$a Moreno, Juan $u Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain;
700    1_
$a Qvarnström, Anna $u Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
700    1_
$a Ružić, Milan $u Bird Protection and Study Society of Serbia, Radnička 20a, 21000 Novi Sad, Serbia;
700    1_
$a Sæther, Stein-Are $u Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway; Norwegian Institute for Nature Research (NINA), 7034 Trondheim, Norway;
700    1_
$a Sætre, Glenn-Peter $u Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, 0316 Oslo, Norway;
700    1_
$a Török, Janos $u Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, 1117 Budapest, Hungary.
700    1_
$a Ellegren, Hans $u Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
773    0_
$w MED00001911 $t Genome research $x 1549-5469 $g Roč. 25, č. 11 (2015), s. 1656-65
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26355005 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161024095601 $b ABA008
999    __
$a ok $b bmc $g 1166552 $s 952868
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 25 $c 11 $d 1656-65 $e 20150909 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...