-
Je něco špatně v tomto záznamu ?
Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix
S. Garg, J. Stölting, V. Zimorski, P. Rada, J. Tachezy, WF. Martin, SB. Gould,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Oxford Journals Open Access Collection
od 2009
ROAD: Directory of Open Access Scholarly Resources
od 2009
PubMed
26338186
DOI
10.1093/gbe/evv175
Knihovny.cz E-zdroje
- MeSH
- mitochondriální proteiny chemie metabolismus MeSH
- mitochondrie metabolismus MeSH
- molekulární evoluce * MeSH
- proteiny - lokalizační signály * MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- transport proteinů MeSH
- Trichomonas vaginalis metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.
Department of Parasitology Charles University Prague Faculty of Science Czech Republic
Institute for Molecular Evolution Heinrich Heine University Düsseldorf Düsseldorf Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028251
- 003
- CZ-PrNML
- 005
- 20161024100034.0
- 007
- ta
- 008
- 161005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gbe/evv175 $2 doi
- 024 7_
- $a 10.1093/gbe/evv175 $2 doi
- 035 __
- $a (PubMed)26338186
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Garg, Sriram $u Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- 245 10
- $a Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix / $c S. Garg, J. Stölting, V. Zimorski, P. Rada, J. Tachezy, WF. Martin, SB. Gould,
- 520 9_
- $a The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import.
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 _2
- $a mitochondriální proteiny $x chemie $x metabolismus $7 D024101
- 650 12
- $a proteiny - lokalizační signály $7 D021382
- 650 _2
- $a transport proteinů $7 D021381
- 650 _2
- $a Saccharomyces cerevisiae $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x chemie $x metabolismus $7 D029701
- 650 _2
- $a Trichomonas vaginalis $x metabolismus $7 D014246
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Stölting, Jan $u Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- 700 1_
- $a Zimorski, Verena $u Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- 700 1_
- $a Rada, Petr $u Department of Parasitology, Charles University in Prague, Faculty of Science, Czech Republic.
- 700 1_
- $a Tachezy, Jan $u Department of Parasitology, Charles University in Prague, Faculty of Science, Czech Republic.
- 700 1_
- $a Martin, William F $u Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- 700 1_
- $a Gould, Sven B $u Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany gould@hhu.de.
- 773 0_
- $w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 7, č. 9 (2015), s. 2716-26
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26338186 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161024100446 $b ABA008
- 999 __
- $a ok $b bmc $g 1166565 $s 952881
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 7 $c 9 $d 2716-26 $e 20150902 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
- LZP __
- $a Pubmed-20161005