-
Something wrong with this record ?
Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling
R. Pielot, S. Kohl, B. Manz, T. Rutten, D. Weier, D. Tarkowská, J. Rolčík, M. Strnad, F. Volke, H. Weber, W. Weschke,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1996 to 1 year ago
Open Access Digital Library
from 1996-01-01
PubMed
26276866
DOI
10.1093/jxb/erv397
Knihovny.cz E-resources
- MeSH
- Gibberellins metabolism MeSH
- Hordeum genetics growth & development metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Magnetic Resonance Imaging MeSH
- Gene Expression Regulation, Plant * MeSH
- Plant Growth Regulators metabolism MeSH
- Plant Proteins genetics metabolism MeSH
- Seeds genetics growth & development metabolism MeSH
- Gene Expression Profiling MeSH
- Gene Expression Regulation, Developmental MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028304
- 003
- CZ-PrNML
- 005
- 20161025100132.0
- 007
- ta
- 008
- 161005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/jxb/erv397 $2 doi
- 024 7_
- $a 10.1093/jxb/erv397 $2 doi
- 035 __
- $a (PubMed)26276866
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Pielot, Rainer $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
- 245 10
- $a Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling / $c R. Pielot, S. Kohl, B. Manz, T. Rutten, D. Weier, D. Tarkowská, J. Rolčík, M. Strnad, F. Volke, H. Weber, W. Weschke,
- 520 9_
- $a The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a vývojová regulace genové exprese $7 D018507
- 650 12
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a gibereliny $x metabolismus $7 D005875
- 650 _2
- $a ječmen (rod) $x genetika $x růst a vývoj $x metabolismus $7 D001467
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a regulátory růstu rostlin $x metabolismus $7 D010937
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 650 _2
- $a semena rostlinná $x genetika $x růst a vývoj $x metabolismus $7 D012639
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kohl, Stefan $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
- 700 1_
- $a Manz, Bertram $u Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany.
- 700 1_
- $a Rutten, Twan $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
- 700 1_
- $a Weier, Diana $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany.
- 700 1_
- $a Tarkowská, Danuše $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
- 700 1_
- $a Rolčík, Jakub $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
- 700 1_
- $a Strnad, Miroslav $u Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic.
- 700 1_
- $a Volke, Frank $u Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany.
- 700 1_
- $a Weber, Hans $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany weber@ipk-gatersleben.de.
- 700 1_
- $a Weschke, Winfriede $u Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany weber@ipk-gatersleben.de.
- 773 0_
- $w MED00006559 $t Journal of experimental botany $x 1460-2431 $g Roč. 66, č. 21 (2015), s. 6927-43
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26276866 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161025100546 $b ABA008
- 999 __
- $a ok $b bmc $g 1166618 $s 952934
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 66 $c 21 $d 6927-43 $e 20150814 $i 1460-2431 $m Journal of Experimental Botany $n J Exp Bot $x MED00006559
- LZP __
- $a Pubmed-20161005