Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster

E. Volna, M. Kotyrba, H. Habiballa,

. 2015 ; 2015 (-) : 205749. [pub] 20150629

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028337

The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028337
003      
CZ-PrNML
005      
20161031102137.0
007      
ta
008      
161005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2015/205749 $2 doi
024    7_
$a 10.1155/2015/205749 $2 doi
035    __
$a (PubMed)26221620
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Volna, Eva $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
245    10
$a ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster / $c E. Volna, M. Kotyrba, H. Habiballa,
520    9_
$a The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.
650    _2
$a akční potenciály $7 D000200
650    _2
$a algoritmy $7 D000465
650    _2
$a elektrokardiografie $x metody $7 D004562
650    12
$a fuzzy logika $7 D017143
650    _2
$a lidé $7 D006801
650    12
$a lingvistika $7 D008037
650    12
$a neuronové sítě $7 D016571
650    _2
$a počítačové zpracování signálu $7 D012815
650    _2
$a časové faktory $7 D013997
650    _2
$a vlnková analýza $7 D058067
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kotyrba, Martin $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
700    1_
$a Habiballa, Hashim $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
773    0_
$w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2015, č. - (2015), s. 205749
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26221620 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161031102559 $b ABA008
999    __
$a ok $b bmc $g 1166651 $s 952967
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 2015 $c - $d 205749 $e 20150629 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...