-
Je něco špatně v tomto záznamu ?
ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster
E. Volna, M. Kotyrba, H. Habiballa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2001
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2012-01-03
Medline Complete (EBSCOhost)
od 2012-01-01
Health & Medicine (ProQuest)
od 2012-01-01
Wiley-Blackwell Open Access Titles
od 2000
PubMed
26221620
DOI
10.1155/2015/205749
Knihovny.cz E-zdroje
- MeSH
- akční potenciály MeSH
- algoritmy MeSH
- časové faktory MeSH
- elektrokardiografie metody MeSH
- fuzzy logika * MeSH
- lidé MeSH
- lingvistika * MeSH
- neuronové sítě * MeSH
- počítačové zpracování signálu MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028337
- 003
- CZ-PrNML
- 005
- 20161031102137.0
- 007
- ta
- 008
- 161005s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2015/205749 $2 doi
- 024 7_
- $a 10.1155/2015/205749 $2 doi
- 035 __
- $a (PubMed)26221620
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Volna, Eva $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
- 245 10
- $a ECG Prediction Based on Classification via Neural Networks and Linguistic Fuzzy Logic Forecaster / $c E. Volna, M. Kotyrba, H. Habiballa,
- 520 9_
- $a The paper deals with ECG prediction based on neural networks classification of different types of time courses of ECG signals. The main objective is to recognise normal cycles and arrhythmias and perform further diagnosis. We proposed two detection systems that have been created with usage of neural networks. The experimental part makes it possible to load ECG signals, preprocess them, and classify them into given classes. Outputs from the classifiers carry a predictive character. All experimental results from both of the proposed classifiers are mutually compared in the conclusion. We also experimented with the new method of time series transparent prediction based on fuzzy transform with linguistic IF-THEN rules. Preliminary results show interesting results based on the unique capability of this approach bringing natural language interpretation of particular prediction, that is, the properties of time series.
- 650 _2
- $a akční potenciály $7 D000200
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a elektrokardiografie $x metody $7 D004562
- 650 12
- $a fuzzy logika $7 D017143
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a lingvistika $7 D008037
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a počítačové zpracování signálu $7 D012815
- 650 _2
- $a časové faktory $7 D013997
- 650 _2
- $a vlnková analýza $7 D058067
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kotyrba, Martin $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
- 700 1_
- $a Habiballa, Hashim $u University of Ostrava, 30 Dubna 22, 70103 Ostrava, Czech Republic.
- 773 0_
- $w MED00181094 $t TheScientificWorldJournal $x 1537-744X $g Roč. 2015, č. - (2015), s. 205749
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26221620 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161031102559 $b ABA008
- 999 __
- $a ok $b bmc $g 1166651 $s 952967
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 2015 $c - $d 205749 $e 20150629 $i 1537-744X $m TheScientificWorldJournal $n ScientificWorldJournal $x MED00181094
- LZP __
- $a Pubmed-20161005