• Je něco špatně v tomto záznamu ?

Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant

U. Rascher, L. Alonso, A. Burkart, C. Cilia, S. Cogliati, R. Colombo, A. Damm, M. Drusch, L. Guanter, J. Hanus, T. Hyvärinen, T. Julitta, J. Jussila, K. Kataja, P. Kokkalis, S. Kraft, T. Kraska, M. Matveeva, J. Moreno, O. Muller, C. Panigada, M....

. 2015 ; 21 (12) : 4673-84. [pub] 20150923

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028388

Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028388
003      
CZ-PrNML
005      
20161024100200.0
007      
ta
008      
161005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/gcb.13017 $2 doi
024    7_
$a 10.1111/gcb.13017 $2 doi
035    __
$a (PubMed)26146813
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Rascher, U $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
245    10
$a Sun-induced fluorescence - a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant / $c U. Rascher, L. Alonso, A. Burkart, C. Cilia, S. Cogliati, R. Colombo, A. Damm, M. Drusch, L. Guanter, J. Hanus, T. Hyvärinen, T. Julitta, J. Jussila, K. Kataja, P. Kokkalis, S. Kraft, T. Kraska, M. Matveeva, J. Moreno, O. Muller, C. Panigada, M. Pikl, F. Pinto, L. Prey, R. Pude, M. Rossini, A. Schickling, U. Schurr, D. Schüttemeyer, J. Verrelst, F. Zemek,
520    9_
$a Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun-induced fluorescence signal on the ground and on a coarse spatial scale using space-borne imaging spectrometers. Intermediate-scale observations using airborne-based imaging spectroscopy, which are critical to bridge the existing gap between small-scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun-induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun-induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun-induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun-induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.
650    _2
$a chlorofyl $x fyziologie $7 D002734
650    _2
$a fluorescence $7 D005453
650    12
$a fotosyntéza $7 D010788
650    _2
$a technologie dálkového snímání $x metody $7 D058998
650    12
$a fluorescenční spektrometrie $7 D013050
650    12
$a sluneční záření $7 D013472
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Alonso, L $u Department of Earth Physics and Thermodynamics, University of Valencia, Dr Moliner 50 46100 Burjassot, Valencia, Spain. $7 gn_A_00004720
700    1_
$a Burkart, A $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Cilia, C $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany. Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Cogliati, S $u Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Colombo, R $u Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Damm, A $u Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
700    1_
$a Drusch, M $u European Space Agency (ESA), ESTEC, Keplerlaan 1, 2200 AG, Noordwijk, the Netherlands.
700    1_
$a Guanter, L $u Institute for Space Sciences, Free University of Berlin, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany.
700    1_
$a Hanus, J $u Global Change Research Centre AS CR, Bělidla 986/4a, 603 00, Brno, Czech Republic.
700    1_
$a Hyvärinen, T $u Specim Spectral Imaging Ltd., Teknologiantie 18A, 90590, Oulu, Finland.
700    1_
$a Julitta, T $u Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Jussila, J $u Specim Spectral Imaging Ltd., Teknologiantie 18A, 90590, Oulu, Finland.
700    1_
$a Kataja, K $u Specim Spectral Imaging Ltd., Teknologiantie 18A, 90590, Oulu, Finland.
700    1_
$a Kokkalis, P $u Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, 15236, Athens, Greece.
700    1_
$a Kraft, S $u European Space Agency (ESA), ESTEC, Keplerlaan 1, 2200 AG, Noordwijk, the Netherlands.
700    1_
$a Kraska, T $u Field Lab Campus Klein-Altendorf, Agricultural Faculty, University of Bonn, Klein-Altendorf 3, 53359, Rheinbach, Germany.
700    1_
$a Matveeva, M $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Moreno, J $u Department of Earth Physics and Thermodynamics, University of Valencia, Dr Moliner 50 46100 Burjassot, Valencia, Spain.
700    1_
$a Muller, O $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Panigada, C $u Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Pikl, M $u Global Change Research Centre AS CR, Bělidla 986/4a, 603 00, Brno, Czech Republic.
700    1_
$a Pinto, F $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Prey, L $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Pude, R $u Field Lab Campus Klein-Altendorf, Agricultural Faculty, University of Bonn, Klein-Altendorf 3, 53359, Rheinbach, Germany.
700    1_
$a Rossini, M $u Remote Sensing of Environmental Dynamics Lab, DISAT, Università degli Studi Milano-Bicocca, Milano, Italy.
700    1_
$a Schickling, A $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Schurr, U $u Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Leo-Brandt-Str., 52425, Jülich, Germany.
700    1_
$a Schüttemeyer, D $u European Space Agency (ESA), ESTEC, Keplerlaan 1, 2200 AG, Noordwijk, the Netherlands.
700    1_
$a Verrelst, J $u Department of Earth Physics and Thermodynamics, University of Valencia, Dr Moliner 50 46100 Burjassot, Valencia, Spain.
700    1_
$a Zemek, F $u Global Change Research Centre AS CR, Bělidla 986/4a, 603 00, Brno, Czech Republic.
773    0_
$w MED00007661 $t Global change biology $x 1365-2486 $g Roč. 21, č. 12 (2015), s. 4673-84
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26146813 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161024100612 $b ABA008
999    __
$a ok $b bmc $g 1166702 $s 953018
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 21 $c 12 $d 4673-84 $e 20150923 $i 1365-2486 $m Global change biology $n Glob Chang Biol $x MED00007661
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...