-
Je něco špatně v tomto záznamu ?
Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm
M. Kyselková, T. Chrudimský, F. Husník, A. Chroňáková, H. Heuer, K. Smalla, D. Elhottová,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
PubMed Central
od 2015
ProQuest Central
od 2015-01-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2015-01-01 do Před 1 rokem
Oxford Journals Open Access Collection
od 1985-02-01
PubMed
27083193
DOI
10.1093/femsec/fiw075
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter účinky léků genetika MeSH
- antibakteriální látky farmakologie MeSH
- chlortetracyklin farmakologie MeSH
- farmy MeSH
- hnůj analýza MeSH
- mapování chromozomů MeSH
- plazmidy genetika MeSH
- prasata MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- rezistence na tetracyklin genetika MeSH
- sekvence nukleotidů genetika MeSH
- sekvenční analýza DNA MeSH
- skot MeSH
- streptomycin farmakologie MeSH
- zastoupení bazí genetika MeSH
- zemědělství MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000278
- 003
- CZ-PrNML
- 005
- 20200121104841.0
- 007
- ta
- 008
- 170103s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/femsec/fiw075 $2 doi
- 024 7_
- $a 10.1093/femsec/fiw075 $2 doi
- 035 __
- $a (PubMed)27083193
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kyselková, Martina $u Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic.
- 245 10
- $a Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm / $c M. Kyselková, T. Chrudimský, F. Husník, A. Chroňáková, H. Heuer, K. Smalla, D. Elhottová,
- 520 9_
- $a Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC plasmids, though this region was interrupted with an insert containing the tet(Y)-tet(R) tetracycline resistance genes and the strA-strB streptomycin resistance genes. Despite Acinetobacter populations being considered natural hosts of LowGC plasmids, these plasmids were not found in three Acinetobacter isolates from the study farm. The isolates harbored tet(Y)-tet(R) genes in identical genetic surroundings as pFK2-7, however, suggesting genetic exchange between Acinetobacter and LowGC plasmids. Abundance of LowGC plasmids and tet(Y) was correlated in manure and soil samples from the farm, indicating that LowGC plasmids may be involved in the spread of tet(Y) in the environment.
- 650 _2
- $a Acinetobacter $x účinky léků $x genetika $7 D000150
- 650 _2
- $a zemědělství $7 D000383
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antibakteriální látky $x farmakologie $7 D000900
- 650 _2
- $a zastoupení bazí $x genetika $7 D001482
- 650 _2
- $a sekvence nukleotidů $x genetika $7 D001483
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a chlortetracyklin $x farmakologie $7 D002751
- 650 _2
- $a mapování chromozomů $7 D002874
- 650 _2
- $a farmy $7 D000072480
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hnůj $x analýza $7 D008372
- 650 _2
- $a plazmidy $x genetika $7 D010957
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 _2
- $a půda $7 D012987
- 650 _2
- $a půdní mikrobiologie $7 D012988
- 650 _2
- $a streptomycin $x farmakologie $7 D013307
- 650 _2
- $a prasata $7 D013552
- 650 _2
- $a rezistence na tetracyklin $x genetika $7 D013753
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Chrudimský, Tomáš $u Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic chrudimsky@upb.cas.cz.
- 700 1_
- $a Husník, Filip $u Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
- 700 1_
- $a Chroňáková, Alica $u Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic.
- 700 1_
- $a Heuer, Holger $u Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany.
- 700 1_
- $a Smalla, Kornelia $u Department of Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany.
- 700 1_
- $a Elhottová, Dana $u Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology, Na Sádkách 7, 370 05 České Budějovice, Czech Republic.
- 773 0_
- $w MED00001790 $t FEMS microbiology ecology $x 1574-6941 $g Roč. 92, č. 6 (2016), s. fiw075
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27083193 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20200121105218 $b ABA008
- 999 __
- $a ok $b bmc $g 1179418 $s 960845
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 92 $c 6 $d fiw075 $e 20160415 $i 1574-6941 $m FEMS microbiology ecology $n FEMS Microbiol Ecol $x MED00001790
- LZP __
- $a Pubmed-20170103