-
Je něco špatně v tomto záznamu ?
Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices
I. Junkar, M. Kulkarni, B. Drašler, N. Rugelj, A. Mazare, A. Flašker, D. Drobne, P. Humpolíček, M. Resnik, P. Schmuki, M. Mozetič, A. Iglič,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčné linie MeSH
- design vybavení MeSH
- kyslík chemie MeSH
- lidé MeSH
- nanotrubičky chemie mikrobiologie ultrastruktura MeSH
- osteoblasty cytologie MeSH
- peroxid vodíku chemie MeSH
- plazmové plyny chemie MeSH
- povrchové vlastnosti MeSH
- sterilizace přístrojové vybavení metody MeSH
- testování materiálů MeSH
- titan chemie MeSH
- ultrafialové záření MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sterilization is the final surface treatment procedure of all implantable devices and is one of the key factors which have to be considered before implementation. Since different sterilization procedures for all implantable devices influence mechanical properties as well as biological response, the influence of different sterilization techniques on titanium nanotubes was studied. Commonly used sterilization techniques such as autoclaving, ultra-violet light sterilization, hydrogen peroxide plasma sterilization as well as the not so frequently used gaseous oxygen plasma sterilization were used. Three different nanotube diameters; 15 nm, 50 nm and 100 nm were employed to study the effects of various sterilization techniques. It was observed that autoclave sterilization resulted in destruction of nanotubular features on all three studied nanotube diameters, while UV-light and both kinds of plasma sterilization did not cause any significant morphological changes on the surfaces. Differences between the sterilization techniques employed influenced cytocompatibility, especially in the case of nanotubes with 100 nm diameter.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000425
- 003
- CZ-PrNML
- 005
- 20170113112518.0
- 007
- ta
- 008
- 170103s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bioelechem.2016.02.001 $2 doi
- 024 7_
- $a 10.1016/j.bioelechem.2016.02.001 $2 doi
- 035 __
- $a (PubMed)26900885
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Junkar, Ita $u Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia. Electronic address: Ita.junkar@ijs.si.
- 245 10
- $a Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices / $c I. Junkar, M. Kulkarni, B. Drašler, N. Rugelj, A. Mazare, A. Flašker, D. Drobne, P. Humpolíček, M. Resnik, P. Schmuki, M. Mozetič, A. Iglič,
- 520 9_
- $a Sterilization is the final surface treatment procedure of all implantable devices and is one of the key factors which have to be considered before implementation. Since different sterilization procedures for all implantable devices influence mechanical properties as well as biological response, the influence of different sterilization techniques on titanium nanotubes was studied. Commonly used sterilization techniques such as autoclaving, ultra-violet light sterilization, hydrogen peroxide plasma sterilization as well as the not so frequently used gaseous oxygen plasma sterilization were used. Three different nanotube diameters; 15 nm, 50 nm and 100 nm were employed to study the effects of various sterilization techniques. It was observed that autoclave sterilization resulted in destruction of nanotubular features on all three studied nanotube diameters, while UV-light and both kinds of plasma sterilization did not cause any significant morphological changes on the surfaces. Differences between the sterilization techniques employed influenced cytocompatibility, especially in the case of nanotubes with 100 nm diameter.
- 650 _2
- $a biokompatibilní materiály $x chemie $7 D001672
- 650 _2
- $a buněčné linie $7 D002460
- 650 _2
- $a viabilita buněk $7 D002470
- 650 _2
- $a design vybavení $7 D004867
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a peroxid vodíku $x chemie $7 D006861
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a nanotrubičky $x chemie $x mikrobiologie $x ultrastruktura $7 D043942
- 650 _2
- $a osteoblasty $x cytologie $7 D010006
- 650 _2
- $a kyslík $x chemie $7 D010100
- 650 _2
- $a plazmové plyny $x chemie $7 D058626
- 650 _2
- $a sterilizace $x přístrojové vybavení $x metody $7 D013242
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 650 _2
- $a titan $x chemie $7 D014025
- 650 _2
- $a ultrafialové záření $7 D014466
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kulkarni, Mukta $u Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia.
- 700 1_
- $a Drašler, Barbara $u Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
- 700 1_
- $a Rugelj, Neža $u Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
- 700 1_
- $a Mazare, Anca $u Department of Materials Science and Engineering, WW4-LKO, University of Erlangen Nuremberg, Martensstr. 7, 91058 Erlangen, Germany.
- 700 1_
- $a Flašker, Ajda $u Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia.
- 700 1_
- $a Drobne, Damjana $u Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
- 700 1_
- $a Humpolíček, Petr $u Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcirnou 3685, 760 01 Zlin, Czech Republic.
- 700 1_
- $a Resnik, Matic $u Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia.
- 700 1_
- $a Schmuki, Patrik $u Department of Materials Science and Engineering, WW4-LKO, University of Erlangen Nuremberg, Martensstr. 7, 91058 Erlangen, Germany.
- 700 1_
- $a Mozetič, Miran $u Jožef Stefan Institute, Jamova cesta 39, Ljubljana SI-1000, Slovenia.
- 700 1_
- $a Iglič, Aleš $u Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana SI-1000, Slovenia.
- 773 0_
- $w MED00005708 $t Bioelectrochemistry (Amsterdam, Netherlands) $x 1878-562X $g Roč. 109, č. - (2016), s. 79-86
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26900885 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170113112619 $b ABA008
- 999 __
- $a ok $b bmc $g 1179565 $s 960992
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 109 $c - $d 79-86 $e 20160210 $i 1878-562X $m Bioelectrochemistry $n Bioelectrochemistry $x MED00005708
- LZP __
- $a Pubmed-20170103