Cervical cancer is one of the important cancers in women. Research on novel treatment approach can reduce the mortality and burden. Although radiotherapy is a common treatment, its negative side effects have concerned physician. In our study, we studied impact of cold atmospheric pressure plasma on the Hela cancer cells, as an alternative treatment. The effect of three different types of such plasma; dielectric barrier discharge (DBD), plasma jet, and afterglow plasma, on the cancer cells were studied. Moreover, some effective operating parameters such as exposure time, applied voltage, composition of working gas in plasma treatment were investigated on the survival of the afterglow plasma. Finally, treatments by the afterglow plasma, gamma radiation (1 Gy), and combination of both were compared. Analysis showed that DBD and plasma jet (direct exposure) effectively killed the cancer cells, even by a minimum applied voltage. But a fraction of the cells survived after the exposure of indirect diffused afterglow plasma. In the case of this plasma, we realized that higher applied voltage and exposure time led to less cell viability. Fewer fractions of survival cells were detected in the case of argon afterglow plasma comparing to oxygen afterglow. Cold atmospheric plasma and its combination with radiation therapy showed a significant decrease in viability of the cells, comparing to the radiation alone. Our research showed that plasma and its combination with radiation therapy have superiority over radiation therapy.
- MeSH
- antitumorózní látky chemická syntéza chemie farmakologie MeSH
- atmosférický tlak MeSH
- HeLa buňky MeSH
- léky antitumorózní - screeningové testy MeSH
- lidé MeSH
- molekulární struktura MeSH
- plazmové plyny chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our previously-obtained impressive results of highly increased C2C12 mouse myoblast adhesion to amine plasma polymers (PPs) motivated current detailed studies of cell resistance to trypsinization, cell proliferation, motility, and the rate of attachment carried out for fibroblasts (LF), keratinocytes (HaCaT), rat vascular smooth muscle cells (VSMC), and endothelial cells (HUVEC, HSVEC, and CPAE) on three different amine PPs. We demonstrated the striking difference in the resistance to trypsin treatment between endothelial and non-endothelial cells. The increased resistance observed for the non-endothelial cell types was accompanied by an increased rate of cellular attachment, even though spontaneous migration was comparable to the control, i.e., to the standard cultivation surface. As demonstrated on LF fibroblasts, the resistance to trypsin was similar in serum-supplemented and serum-free media, i.e., medium without cell adhesion-mediating proteins. The increased cell adhesion was also confirmed for LF cells by an independent technique, single-cell force spectroscopy. This method, as well as the cell attachment rate, proved the difference among the plasma polymers with different amounts of amine groups, but other investigated techniques could not reveal the differences in the cell behaviour on different amine PPs. Based on all the results, the increased resistance to trypsinization of C2C12, LF, HaCaT, and VSMC cells on amine PPs can be explained most probably by a non-specific cell adhesion such as electrostatic interaction between the cells and amine groups on the material surface, rather than by the receptor-mediated adhesion through serum-derived proteins adsorbed on the PPs.
- MeSH
- aminy chemie MeSH
- buněčná adheze účinky léků MeSH
- buněčné linie MeSH
- lidé MeSH
- plazmové plyny chemie MeSH
- polymery chemie farmakologie MeSH
- povrchové vlastnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fungal diseases seriously affect agricultural production and the food industry. Crop protection is usually achieved by synthetic fungicides, therefore more sustainable and innovative technologies are increasingly required. The atmospheric pressure low-temperature plasma is a novel suitable measure. We report on the effect of plasma treatment on phytopathogenic fungi causing quantitative and qualitative losses of products both in the field and postharvest. We focus our attention on the in vitro direct inhibitory effect of non-contact Surface Dielectric Barrier Discharge on conidia germination of Botrytis cinerea, Monilinia fructicola, Aspergillus carbonarius and Alternaria alternata. A few minutes of treatment was required to completely inactivate the fungi on an artificial medium. Morphological analysis of spores by Scanning Electron Microscopy suggests that the main mechanism is plasma etching due to Reactive Oxygen Species or UV radiation. Spectroscopic analysis of plasma generated in humid air gives the hint that the rotational temperature of gas should not play a relevant role being very close to room temperature. In vivo experiments on artificially inoculated cherry fruits demonstrated that inactivation of fungal spores by the direct inhibitory effect of plasma extend their shelf life. Pre-treatment of fruits before inoculation improve the resistance to infections maybe by activating defense responses in plant tissues.
The aim of this study was to develop a method for the separation of oxaliplatin enantiomers at attomolar concentration levels. A combination of capillary electrophoresis and inductively coupled plasma mass spectrometry was chosen due to their unique characteristics, including fast and easy modification of separation selectivity, and significant limits of detection and linearity. In the first step, we optimized conditions for the separation of oxaliplatin enantiomers including background electrolyte composition and concentration, pH, and type and concentration of the chiral selector. Under optimal conditions, sodium borate buffer pH 9.5, ionic strength 40 mmol L-1, with 60 mg mL-1 sulfated β-cyclodextrin, separation was obtained with a resolution of 2.0. This electrolyte system was then used in the 'in-house' connection of capillary electrophoresis with inductively coupled plasma mass spectrometer. In this instance, separation lasted for 9.5 min. Calibrations were linear in the range of 0.1-500 μg mL-1 with R2 of 0.9999. LOD and LOQ values were of 64 ng mL-1 and 116 ng mL-1 of oxaliplatin, respectively. This represents detection of 49 fg or 125 attomol of oxaliplatin enantiomers in the capillary electrophoresis injected sample zone. Finally, the method was successfully applied for detection of oxaliplatin enantiomers in spiked urine samples.
Radio frequency plasma is one of the means to modify the polymer surface namely in the activation of polypropylene membranes (PPM) with O2 plasma. Activated membranes were deposited with TiO2 nanoparticles by the dip coating method and the bare sample and modified sample (PPM5-TiO2) were irradiated by UV lamps for 20-120 min. Characterization techniques such as X-ray diffraction (XRD), Attenuated total reflection technique- Fourier transform infrared spectroscopy (ATR-FTIR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), Scanning electron microscope (SEM) and water contact angle (WCA) measurements were applied to study the alteration of ensuing membrane surface properties which shows the nanoparticles on the sample surface including the presence of Ti on PPM. The WCA decreased from 135° (PPM) to 90° (PPM5-TiO2) and after UV irradiation, the WCA of PPM5-TiO2 diminished from 90° to 40°.
- MeSH
- difrakce rentgenového záření MeSH
- fotoelektronová spektroskopie MeSH
- kyslík chemie MeSH
- membrány umělé * MeSH
- nanočástice chemie MeSH
- plazmové plyny chemie MeSH
- polypropyleny chemie MeSH
- smáčivost MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- teplota MeSH
- termogravimetrie MeSH
- titan chemie MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
Surface modification is an important step in making a synthetic polymer cytocompatible. We have previously reported improved cytocompatibility of immortalized human keratinocytes (HaCaT) with the otherwise bioinert fluorinated ethylene propylene (FEP) upon treatment with argon plasma discharge. In this article, we show that FEP modified with Ar plasma with the power of 3 and 8 W for 40 and 240 s served as a suitable material for cultivation of primary human dermal fibroblasts (HDF), which showed significantly improved proliferation and spreading comparable to standard tissue culture polystyrene. We also evaluated focal adhesions formed by HDF cells on modified FEP, which were far more numerous compared to pristine FEP. Moreover, we attempted spontaneous osteogenic differentiation of adipose-derived mesenchymal stem cells modified with human telomerase reverse transcriptase on Ar plasma-modified FEP. While the spontaneous osteogenic differentiation was unsuccessful, the cells were able to adhere and differentiated on tested matrices upon the administration of osteodifferentiation medium. These combined findings suggest that the treatment of FEP with Ar plasma comprises and efficient method to enable the adhesion and proliferation of various cell types on an otherwise largely bioinert material.
- MeSH
- argon chemie MeSH
- buněčná adheze MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- fibroblasty cytologie metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky cytologie metabolismus MeSH
- osteogeneze MeSH
- plazmové plyny chemie MeSH
- polytetrafluoroethylen analogy a deriváty chemie MeSH
- proliferace buněk MeSH
- škára cytologie metabolismus MeSH
- tuková tkáň cytologie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- argon chemie MeSH
- biokompatibilní materiály chemie MeSH
- buněčná adheze MeSH
- buněčné linie MeSH
- fluorescenční barviva MeSH
- keratinocyty cytologie fyziologie MeSH
- lidé MeSH
- optické zobrazování metody MeSH
- plazmové plyny chemie MeSH
- polytetrafluoroethylen analogy a deriváty chemie MeSH
- povrchové vlastnosti MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The inactivation of four micromycete species by action of non-thermal plasma was followed. Two sources of plasma were compared, namely, positive corona discharge and dielectric barrier discharge. The corona discharge appeared as suitable for fungal spore inactivation in water suspension, whereas the barrier discharge inactivated spores on the surface of cultivation agar. Cladosporium sphaerospermum was the most sensitive, being inactivated within 10 min of exposure to plasma, whereas Aspergillus oryzae displayed decrease in viable cell count only, the complete inactivation was not achieved even after 40 min of exposure. Intermediate sensitivity was found for Alternaria sp. and Byssochlamys nivea. The significant delay of growth was observed for all fungi after exposure to sublethal dose of plasma, but we failed to express this effect quantitatively.
The present work studies the microstructure and mechanical performance of tricalcium phosphate (TCP) based cermet toughened by iron particles. A novelty arises by the employment of spark plasma sintering for fabrication of the cermet. Results showed partial transformation of initial alpha TCP matrix to beta phase and the absence of oxidation of iron particles, as well as a lack of chemical reaction between TCP and iron components during sintering. The values of compressive and tensile strength of TCP/Fe cermet were 3.2 and 2.5 times, respectively, greater than those of monolithic TCP. Fracture analysis revealed the simultaneous action of crack-bridging and crack-deflection microstructural toughening mechanisms under compression. In contrast, under tension the reinforcing mechanism was only crack-bridging, being the reason for smaller increment of strength. Elastic properties of the cermet better matched values reported for human cortical bone. Thereby the new TCP/Fe cermet has potential for eventual use as a material for bone fractures fixation under load-bearing conditions.
We have investigated the application of Ar plasma for creation of nanostructured ultra high molecular weight polyethylene (PE) surface in order to enhance adhesion of mouse embryonic fibroblasts (L929). The aim of this study was to investigate the effect of the interface between plasma-treated and gold-coated PE on adhesion and spreading of cells. The surface properties of pristine samples and its modified counterparts were studied by different experimental techniques (gravimetry, goniometry and X-ray photoelectron spectroscopy (XPS), electrokinetic analysis), which were used for characterization of treated and sputtered layers, polarity and surface chemical structure, respectively. Further, atomic force microscopy (AFM) was employed to study the surface morphology and roughness. Biological responses of cells seeded on PE samples were evaluated in terms of cell adhesion, spreading, morphology and proliferation. Detailed cell morphology and intercellular connections were followed by scanning electron microscopy (SEM). As it was expected the thickness of a deposited gold film was an increasing function of the sputtering time. Despite the fact that plasma treatment proceeded in inert plasma, oxidized degradation products were formed on the PE surface which would contribute to increased hydrophilicity (wettability) of the plasma treated polymer. The XPS method showed a decrease in carbon concentration with increasing plasma treatment. Cell adhesion measured on the interface between plasma treated and gold coated PE was inversely proportional to the thickness of a gold layer on a sample.
- MeSH
- biokompatibilní potahované materiály * chemie farmakologie MeSH
- buněčné linie MeSH
- myši MeSH
- plazmové plyny chemie MeSH
- polyethyleny * chemie farmakologie MeSH
- povrchové vlastnosti MeSH
- testování materiálů * MeSH
- zlato * chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH