Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease

P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,

. 2016 ; 67 (-) : 39-46. [pub] 20160204

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000480

Grantová podpora
NT13499 MZ0 CEP - Centrální evidence projektů

OBJECTIVE: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. METHODS AND MATERIAL: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). RESULTS: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. CONCLUSION: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000480
003      
CZ-PrNML
005      
20181029091518.0
007      
ta
008      
170103s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.artmed.2016.01.004 $2 doi
024    7_
$a 10.1016/j.artmed.2016.01.004 $2 doi
035    __
$a (PubMed)26874552
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Drotár, Peter. $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0228657
245    10
$a Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease / $c P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
520    9_
$a OBJECTIVE: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. METHODS AND MATERIAL: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). RESULTS: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. CONCLUSION: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.
650    _2
$a senioři $7 D000368
650    12
$a biomechanika $7 D001696
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a diferenciální diagnóza $7 D003937
650    12
$a psaní rukou $7 D006236
650    _2
$a lidé $7 D006801
650    _2
$a lidé středního věku $7 D008875
650    _2
$a Parkinsonova nemoc $x diagnóza $7 D010300
650    _2
$a tlak $7 D011312
650    _2
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Mekyska, Jiří. $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0228655
700    1_
$a Rektorová, Irena, $u First Department of Neurology, Faculty of Medicine, St. Anns University Hospital, Pekarska 664, 66591 Brno, Czech Republic. Electronic address: rektorova@fnusa.cz. $d 1969- $7 ola2005284393
700    1_
$a Masárová, Lucia. $u First Department of Neurology, Faculty of Medicine, St. Anns University Hospital, Pekarska 664, 66591 Brno, Czech Republic. $7 xx0228653
700    1_
$a Smékal, Zdeněk $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0005416
700    1_
$a Faundez-Zanuy, Marcos $u Signal Processing Group, Tecnocampus, Escola Universitaria Politecnica de Mataro, Avda. Ernest Llunch 32, 08302 Mataro, Spain.
773    0_
$w MED00000594 $t Artificial intelligence in medicine $x 1873-2860 $g Roč. 67, č. - (2016), s. 39-46
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26874552 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20181029092033 $b ABA008
999    __
$a ok $b bmc $g 1179620 $s 961047
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 67 $c - $d 39-46 $e 20160204 $i 1873-2860 $m Artificial intelligence in medicine $n Artif Intell Med $x MED00000594
GRA    __
$a NT13499 $p MZ0
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...