-
Je něco špatně v tomto záznamu ?
Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease
P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NT13499
MZ0
CEP - Centrální evidence projektů
- MeSH
- biomechanika * MeSH
- diferenciální diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc diagnóza MeSH
- psaní rukou * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- support vector machine MeSH
- tlak MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. METHODS AND MATERIAL: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). RESULTS: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. CONCLUSION: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000480
- 003
- CZ-PrNML
- 005
- 20181029091518.0
- 007
- ta
- 008
- 170103s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.artmed.2016.01.004 $2 doi
- 024 7_
- $a 10.1016/j.artmed.2016.01.004 $2 doi
- 035 __
- $a (PubMed)26874552
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Drotár, Peter. $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0228657
- 245 10
- $a Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease / $c P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, M. Faundez-Zanuy,
- 520 9_
- $a OBJECTIVE: We present the PaHaW Parkinson's disease handwriting database, consisting of handwriting samples from Parkinson's disease (PD) patients and healthy controls. Our goal is to show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD. METHODS AND MATERIAL: The database contains records from 37 PD patients and 38 healthy controls performing eight different handwriting tasks. The tasks include drawing an Archimedean spiral, repetitively writing orthographically simple syllables and words, and writing of a sentence. In addition to the conventional kinematic features related to the dynamics of handwriting, we investigated new pressure features based on the pressure exerted on the writing surface. To discriminate between PD patients and healthy subjects, three different classifiers were compared: K-nearest neighbors (K-NN), ensemble AdaBoost classifier, and support vector machines (SVM). RESULTS: For predicting PD based on kinematic and pressure features of handwriting, the best performing model was SVM with classification accuracy of Pacc=81.3% (sensitivity Psen=87.4% and specificity of Pspe=80.9%). When evaluated separately, pressure features proved to be relevant for PD diagnosis, yielding Pacc=82.5% compared to Pacc=75.4% using kinematic features. CONCLUSION: Experimental results showed that an analysis of kinematic and pressure features during handwriting can help assess subtle characteristics of handwriting and discriminate between PD patients and healthy controls.
- 650 _2
- $a senioři $7 D000368
- 650 12
- $a biomechanika $7 D001696
- 650 _2
- $a studie případů a kontrol $7 D016022
- 650 _2
- $a diferenciální diagnóza $7 D003937
- 650 12
- $a psaní rukou $7 D006236
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a Parkinsonova nemoc $x diagnóza $7 D010300
- 650 _2
- $a tlak $7 D011312
- 650 _2
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Mekyska, Jiří. $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0228655
- 700 1_
- $a Rektorová, Irena, $u First Department of Neurology, Faculty of Medicine, St. Anns University Hospital, Pekarska 664, 66591 Brno, Czech Republic. Electronic address: rektorova@fnusa.cz. $d 1969- $7 ola2005284393
- 700 1_
- $a Masárová, Lucia. $u First Department of Neurology, Faculty of Medicine, St. Anns University Hospital, Pekarska 664, 66591 Brno, Czech Republic. $7 xx0228653
- 700 1_
- $a Smékal, Zdeněk $u Department of Telecommunications, Brno University of Technology, Technická 12, 61200 Brno, Czech Republic. $7 xx0005416
- 700 1_
- $a Faundez-Zanuy, Marcos $u Signal Processing Group, Tecnocampus, Escola Universitaria Politecnica de Mataro, Avda. Ernest Llunch 32, 08302 Mataro, Spain.
- 773 0_
- $w MED00000594 $t Artificial intelligence in medicine $x 1873-2860 $g Roč. 67, č. - (2016), s. 39-46
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26874552 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20181029092033 $b ABA008
- 999 __
- $a ok $b bmc $g 1179620 $s 961047
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 67 $c - $d 39-46 $e 20160204 $i 1873-2860 $m Artificial intelligence in medicine $n Artif Intell Med $x MED00000594
- GRA __
- $a NT13499 $p MZ0
- LZP __
- $a Pubmed-20170103