-
Je něco špatně v tomto záznamu ?
Automatic detection of Parkinson's disease in running speech spoken in three different languages
JR. Orozco-Arroyave, F. Hönig, JD. Arias-Londoño, JF. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz, E. Nöth,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26827042
DOI
10.1121/1.4939739
Knihovny.cz E-zdroje
- MeSH
- akustika řeči MeSH
- čtení MeSH
- dospělí MeSH
- fonetika MeSH
- jazyk (prostředek komunikace) * MeSH
- lidé středního věku MeSH
- lidé MeSH
- Parkinsonova nemoc diagnóza patofyziologie MeSH
- plocha pod křivkou MeSH
- řeč fyziologie MeSH
- rozpoznávání (psychologie) MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Španělsko MeSH
The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000550
- 003
- CZ-PrNML
- 005
- 20170120111254.0
- 007
- ta
- 008
- 170103s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1121/1.4939739 $2 doi
- 024 7_
- $a 10.1121/1.4939739 $2 doi
- 035 __
- $a (PubMed)26827042
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Orozco-Arroyave, J R $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia.
- 245 10
- $a Automatic detection of Parkinson's disease in running speech spoken in three different languages / $c JR. Orozco-Arroyave, F. Hönig, JD. Arias-Londoño, JF. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz, E. Nöth,
- 520 9_
- $a The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a plocha pod křivkou $7 D019540
- 650 _2
- $a Česká republika $7 D018153
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a Německo $7 D005858
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a jazyk (prostředek komunikace) $7 D007802
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
- 650 _2
- $a fonetika $7 D010700
- 650 _2
- $a čtení $7 D011932
- 650 _2
- $a rozpoznávání (psychologie) $7 D021641
- 650 _2
- $a Španělsko $7 D013030
- 650 _2
- $a řeč $x fyziologie $7 D013060
- 650 _2
- $a akustika řeči $7 D013061
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hönig, F $u Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstraβe 3, Erlangen 91058, Germany.
- 700 1_
- $a Arias-Londoño, J D $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia. $7 gn_A_00008419
- 700 1_
- $a Vargas-Bonilla, J F $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia.
- 700 1_
- $a Daqrouq, K $u Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
- 700 1_
- $a Skodda, S $u Department of Neurology, Knappschaftskrankenhaus, Ruhr-University, In der Schornau 23-25, Bochum D-44892, Germany.
- 700 1_
- $a Rusz, J $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague 6, Czech Republic.
- 700 1_
- $a Nöth, E $u Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstraβe 3, Erlangen 91058, Germany.
- 773 0_
- $w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 139, č. 1 (2016), s. 481-500
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26827042 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170120111404 $b ABA008
- 999 __
- $a ok $b bmc $g 1179690 $s 961117
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 139 $c 1 $d 481-500 $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
- LZP __
- $a Pubmed-20170103