• Je něco špatně v tomto záznamu ?

Automatic detection of Parkinson's disease in running speech spoken in three different languages

JR. Orozco-Arroyave, F. Hönig, JD. Arias-Londoño, JF. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz, E. Nöth,

. 2016 ; 139 (1) : 481-500.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000550

The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000550
003      
CZ-PrNML
005      
20170120111254.0
007      
ta
008      
170103s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1121/1.4939739 $2 doi
024    7_
$a 10.1121/1.4939739 $2 doi
035    __
$a (PubMed)26827042
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Orozco-Arroyave, J R $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia.
245    10
$a Automatic detection of Parkinson's disease in running speech spoken in three different languages / $c JR. Orozco-Arroyave, F. Hönig, JD. Arias-Londoño, JF. Vargas-Bonilla, K. Daqrouq, S. Skodda, J. Rusz, E. Nöth,
520    9_
$a The aim of this study is the analysis of continuous speech signals of people with Parkinson's disease (PD) considering recordings in different languages (Spanish, German, and Czech). A method for the characterization of the speech signals, based on the automatic segmentation of utterances into voiced and unvoiced frames, is addressed here. The energy content of the unvoiced sounds is modeled using 12 Mel-frequency cepstral coefficients and 25 bands scaled according to the Bark scale. Four speech tasks comprising isolated words, rapid repetition of the syllables /pa/-/ta/-/ka/, sentences, and read texts are evaluated. The method proves to be more accurate than classical approaches in the automatic classification of speech of people with PD and healthy controls. The accuracies range from 85% to 99% depending on the language and the speech task. Cross-language experiments are also performed confirming the robustness and generalization capability of the method, with accuracies ranging from 60% to 99%. This work comprises a step forward for the development of computer aided tools for the automatic assessment of dysarthric speech signals in multiple languages.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a plocha pod křivkou $7 D019540
650    _2
$a Česká republika $7 D018153
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a Německo $7 D005858
650    _2
$a lidé $7 D006801
650    12
$a jazyk (prostředek komunikace) $7 D007802
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a Parkinsonova nemoc $x diagnóza $x patofyziologie $7 D010300
650    _2
$a fonetika $7 D010700
650    _2
$a čtení $7 D011932
650    _2
$a rozpoznávání (psychologie) $7 D021641
650    _2
$a Španělsko $7 D013030
650    _2
$a řeč $x fyziologie $7 D013060
650    _2
$a akustika řeči $7 D013061
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hönig, F $u Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstraβe 3, Erlangen 91058, Germany.
700    1_
$a Arias-Londoño, J D $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia. $7 gn_A_00008419
700    1_
$a Vargas-Bonilla, J F $u Faculty of Engineering, Universidad de Antioquia, Calle 67 Número 53-108, Medellín 1226, Colombia.
700    1_
$a Daqrouq, K $u Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
700    1_
$a Skodda, S $u Department of Neurology, Knappschaftskrankenhaus, Ruhr-University, In der Schornau 23-25, Bochum D-44892, Germany.
700    1_
$a Rusz, J $u Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague 6, Czech Republic.
700    1_
$a Nöth, E $u Pattern Recognition Lab, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Martensstraβe 3, Erlangen 91058, Germany.
773    0_
$w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 139, č. 1 (2016), s. 481-500
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26827042 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170120111404 $b ABA008
999    __
$a ok $b bmc $g 1179690 $s 961117
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 139 $c 1 $d 481-500 $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...