Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series

CL. Towse, J. Vymetal, J. Vondrasek, V. Daggett,

. 2016 ; 110 (2) : 348-61.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000613
E-zdroje Online Plný text

NLK Cell Press Free Archives od 1960-01-01 do Před 1 rokem
Free Medical Journals od 1960 do Před 1 rokem
Freely Accessible Science Journals od 1960 do Před 12 měsíci
PubMed Central od 1960 do Před 1 rokem
Europe PubMed Central od 1960 do Před 1 rokem
Open Access Digital Library od 1960-09-01

Various host-guest peptide series are used by experimentalists as reference conformational states. One such use is as a baseline for random-coil NMR chemical shifts. Comparison to this random-coil baseline, through secondary chemical shifts, is used to infer protein secondary structure. The use of these random-coil data sets rests on the perception that the reference chemical shifts arise from states where there is little or no conformational bias. However, there is growing evidence that the conformational composition of natively and nonnatively unfolded proteins fail to approach anything that can be construed as random coil. Here, we use molecular dynamics simulations of an alanine-based host-guest peptide series (AAXAA) as a model of unfolded and denatured states to examine the intrinsic propensities of the amino acids. We produced ensembles that are in good agreement with the experimental NMR chemical shifts and confirm that the sampling of the 20 natural amino acids in this peptide series is be far from random. Preferences toward certain regions of conformational space were both present and dependent upon the environment when compared under conditions typically used to denature proteins, i.e., thermal and chemical denaturation. Moreover, the simulations allowed us to examine the conformational makeup of the underlying ensembles giving rise to the ensemble-averaged chemical shifts. We present these data as an intrinsic backbone propensity library that forms part of our Structural Library of Intrinsic Residue Propensities to inform model building, to aid in interpretation of experiment, and for structure prediction of natively and nonnatively unfolded states.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000613
003      
CZ-PrNML
005      
20170113114335.0
007      
ta
008      
170103s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpj.2015.12.008 $2 doi
024    7_
$a 10.1016/j.bpj.2015.12.008 $2 doi
035    __
$a (PubMed)26789758
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Towse, Clare-Louise $u Department of Bioengineering, University of Washington, Seattle, Washington.
245    10
$a Insights into Unfolded Proteins from the Intrinsic ϕ/ψ Propensities of the AAXAA Host-Guest Series / $c CL. Towse, J. Vymetal, J. Vondrasek, V. Daggett,
520    9_
$a Various host-guest peptide series are used by experimentalists as reference conformational states. One such use is as a baseline for random-coil NMR chemical shifts. Comparison to this random-coil baseline, through secondary chemical shifts, is used to infer protein secondary structure. The use of these random-coil data sets rests on the perception that the reference chemical shifts arise from states where there is little or no conformational bias. However, there is growing evidence that the conformational composition of natively and nonnatively unfolded proteins fail to approach anything that can be construed as random coil. Here, we use molecular dynamics simulations of an alanine-based host-guest peptide series (AAXAA) as a model of unfolded and denatured states to examine the intrinsic propensities of the amino acids. We produced ensembles that are in good agreement with the experimental NMR chemical shifts and confirm that the sampling of the 20 natural amino acids in this peptide series is be far from random. Preferences toward certain regions of conformational space were both present and dependent upon the environment when compared under conditions typically used to denature proteins, i.e., thermal and chemical denaturation. Moreover, the simulations allowed us to examine the conformational makeup of the underlying ensembles giving rise to the ensemble-averaged chemical shifts. We present these data as an intrinsic backbone propensity library that forms part of our Structural Library of Intrinsic Residue Propensities to inform model building, to aid in interpretation of experiment, and for structure prediction of natively and nonnatively unfolded states.
650    _2
$a alanin $x analogy a deriváty $7 D000409
650    _2
$a vnitřně neuspořádané proteiny $x chemie $7 D064267
650    12
$a simulace molekulární dynamiky $7 D056004
650    _2
$a oligopeptidy $x chemie $7 D009842
650    _2
$a denaturace proteinů $7 D011489
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Vymetal, Jiri $u Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Vondrasek, Jiri $u Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Daggett, Valerie $u Department of Bioengineering, University of Washington, Seattle, Washington. Electronic address: daggett@u.washington.edu.
773    0_
$w MED00000774 $t Biophysical journal $x 1542-0086 $g Roč. 110, č. 2 (2016), s. 348-61
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26789758 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170113114436 $b ABA008
999    __
$a ok $b bmc $g 1179753 $s 961180
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 110 $c 2 $d 348-61 $i 1542-0086 $m Biophysical journal $n Biophys J $x MED00000774
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...