-
Je něco špatně v tomto záznamu ?
Asymptotic stability of tri-trophic food chains sharing a common resource
I. Vrkoč, V. Křivan,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
- MeSH
- biodiverzita MeSH
- biologické modely * MeSH
- ekosystém MeSH
- matematické pojmy MeSH
- potravní řetězec * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain described by the Lotka-Volterra type dynamics is globally asymptotically stable whenever it exists. This article extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Numerical simulations show that as the number of food chains increases, the real part of the leading eigenvalue, while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of food chains in the web.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000927
- 003
- CZ-PrNML
- 005
- 20170120104501.0
- 007
- ta
- 008
- 170103s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mbs.2015.10.005 $2 doi
- 024 7_
- $a 10.1016/j.mbs.2015.10.005 $2 doi
- 035 __
- $a (PubMed)26498384
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vrkoč, Ivo $u Mathematical Institute, Czech Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic. Electronic address: vrkoc@math.cas.cz.
- 245 10
- $a Asymptotic stability of tri-trophic food chains sharing a common resource / $c I. Vrkoč, V. Křivan,
- 520 9_
- $a One of the key results of the food web theory states that the interior equilibrium of a tri-trophic food chain described by the Lotka-Volterra type dynamics is globally asymptotically stable whenever it exists. This article extends this result to food webs consisting of several food chains sharing a common resource. A Lyapunov function for such food webs is constructed and asymptotic stability of the interior equilibrium is proved. Numerical simulations show that as the number of food chains increases, the real part of the leading eigenvalue, while still negative, approaches zero. Thus the resilience of such food webs decreases with the number of food chains in the web.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biodiverzita $7 D044822
- 650 _2
- $a ekosystém $7 D017753
- 650 12
- $a potravní řetězec $7 D020387
- 650 _2
- $a matematické pojmy $7 D055641
- 650 12
- $a biologické modely $7 D008954
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Křivan, Vlastimil $u Institute of Entomology, Biology Center, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic; Department of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic. Electronic address: vlastimil.krivan@gmail.com.
- 773 0_
- $w MED00003200 $t Mathematical biosciences $x 1879-3134 $g Roč. 270, č. Pt A (2015), s. 90-4
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26498384 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170120104611 $b ABA008
- 999 __
- $a ok $b bmc $g 1180067 $s 961494
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 270 $c Pt A $d 90-4 $e 20151020 $i 1879-3134 $m Mathematical biosciences $n Math Biosci $x MED00003200
- LZP __
- $a Pubmed-20170103