Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI

J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt,

. 2016 ; 75 (3) : 1355-65. [pub] 20150413

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Medline Complete (EBSCOhost) from 2012-01-01 to 1 year ago
Wiley Free Content from 1999 to 5 years ago

PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17001169
003      
CZ-PrNML
005      
20170120103014.0
007      
ta
008      
170103s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/mrm.25619 $2 doi
024    7_
$a 10.1002/mrm.25619 $2 doi
035    __
$a (PubMed)25865576
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kratochvíla, Jiří $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
245    10
$a Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI / $c J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt,
520    9_
$a PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.
650    12
$a algoritmy $7 D000465
650    _2
$a kapiláry $7 D002196
650    _2
$a karcinom z renálních buněk $x krevní zásobení $7 D002292
650    _2
$a kontrastní látky $7 D003287
650    _2
$a lidé $7 D006801
650    _2
$a ledviny $x krevní zásobení $7 D007668
650    _2
$a nádory ledvin $x krevní zásobení $7 D007680
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    12
$a biologické modely $7 D008954
650    _2
$a perfuzní zobrazování $7 D055420
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jiřík, Radovan $u Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Bartoš, Michal $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. Institute of Information Technology and Automation of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
700    1_
$a Standara, Michal $u Masaryk Memorial Cancer Institute, Brno, Czech Republic.
700    1_
$a Starčuk, Zenon $u Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Taxt, Torfinn $u Department of Biomedicine, University of Bergen, Bergen, Norway.
773    0_
$w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 75, č. 3 (2016), s. 1355-65
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25865576 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170120103124 $b ABA008
999    __
$a ok $b bmc $g 1180309 $s 961736
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 75 $c 3 $d 1355-65 $e 20150413 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
LZP    __
$a Pubmed-20170103

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...