-
Something wrong with this record ?
Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI
J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Medline Complete (EBSCOhost)
from 2012-01-01 to 1 year ago
Wiley Free Content
from 1999 to 5 years ago
PubMed
25865576
DOI
10.1002/mrm.25619
Knihovny.cz E-resources
- MeSH
- Algorithms * MeSH
- Models, Biological * MeSH
- Capillaries MeSH
- Carcinoma, Renal Cell blood supply MeSH
- Contrast Media MeSH
- Kidney blood supply MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Kidney Neoplasms blood supply MeSH
- Perfusion Imaging MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17001169
- 003
- CZ-PrNML
- 005
- 20170120103014.0
- 007
- ta
- 008
- 170103s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/mrm.25619 $2 doi
- 024 7_
- $a 10.1002/mrm.25619 $2 doi
- 035 __
- $a (PubMed)25865576
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kratochvíla, Jiří $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 245 10
- $a Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI / $c J. Kratochvíla, R. Jiřík, M. Bartoš, M. Standara, Z. Starčuk, T. Taxt,
- 520 9_
- $a PURPOSE: One of the main challenges in quantitative dynamic contrast-enhanced (DCE) MRI is estimation of the arterial input function (AIF). Usually, the signal from a single artery (ignoring contrast dispersion, partial volume effects and flow artifacts) or a population average of such signals (also ignoring variability between patients) is used. METHODS: Multi-channel blind deconvolution is an alternative approach avoiding most of these problems. The AIF is estimated directly from the measured tracer concentration curves in several tissues. This contribution extends the published methods of multi-channel blind deconvolution by applying a more realistic model of the impulse residue function, the distributed capillary adiabatic tissue homogeneity model (DCATH). In addition, an alternative AIF model is used and several AIF-scaling methods are tested. RESULTS: The proposed method is evaluated on synthetic data with respect to the number of tissue regions and to the signal-to-noise ratio. Evaluation on clinical data (renal cell carcinoma patients before and after the beginning of the treatment) gave consistent results. An initial evaluation on clinical data indicates more reliable and less noise sensitive perfusion parameter estimates. CONCLUSION: Blind multi-channel deconvolution using the DCATH model might be a method of choice for AIF estimation in a clinical setup.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a kapiláry $7 D002196
- 650 _2
- $a karcinom z renálních buněk $x krevní zásobení $7 D002292
- 650 _2
- $a kontrastní látky $7 D003287
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a ledviny $x krevní zásobení $7 D007668
- 650 _2
- $a nádory ledvin $x krevní zásobení $7 D007680
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a perfuzní zobrazování $7 D055420
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jiřík, Radovan $u Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Bartoš, Michal $u Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic. Institute of Information Technology and Automation of the Academy of Sciences of the Czech Republic, Praha, Czech Republic.
- 700 1_
- $a Standara, Michal $u Masaryk Memorial Cancer Institute, Brno, Czech Republic.
- 700 1_
- $a Starčuk, Zenon $u Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic.
- 700 1_
- $a Taxt, Torfinn $u Department of Biomedicine, University of Bergen, Bergen, Norway.
- 773 0_
- $w MED00003172 $t Magnetic resonance in medicine $x 1522-2594 $g Roč. 75, č. 3 (2016), s. 1355-65
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25865576 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170120103124 $b ABA008
- 999 __
- $a ok $b bmc $g 1180309 $s 961736
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 75 $c 3 $d 1355-65 $e 20150413 $i 1522-2594 $m Magnetic resonance in medicine $n Magn Reson Med $x MED00003172
- LZP __
- $a Pubmed-20170103