Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Data collection methods for the diagnosis of Parkinson's disease

Michal Vadovský, Ján Paralič

Jazyk angličtina Země Česko

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17007339

In determining the symptoms and predicting disease in medicine, health outcomes of patients are used, which are obtained from different clinical tests. Among the initial symptoms of people suffering from Parkinson's disease we can include muscle rigidity, problems with speech (dysphonia), movement or writing (dysgraphia). In this article, we focus just on the data obtained from the primary symp- toms of patients and their further use for early diagnosis and detection of Parkinson's disease using machine learning methods. We first describe basic characteristics of this disease and its typical features and then we analyze the current state and methods of collecting data used for creating decision models. Next, we also summarize the results of our previous research in this area and describe the future directions of our work.

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc17007339
003      
CZ-PrNML
005      
20170522114619.0
007      
cr|cn|
008      
170221s2017 xr d fs 000 0|eng||
009      
AR
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Vadovský, Michal $7 _AN090404 $u Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovakia
245    10
$a Data collection methods for the diagnosis of Parkinson's disease / $c Michal Vadovský, Ján Paralič
504    __
$a Literatura
520    3_
$a In determining the symptoms and predicting disease in medicine, health outcomes of patients are used, which are obtained from different clinical tests. Among the initial symptoms of people suffering from Parkinson's disease we can include muscle rigidity, problems with speech (dysphonia), movement or writing (dysgraphia). In this article, we focus just on the data obtained from the primary symp- toms of patients and their further use for early diagnosis and detection of Parkinson's disease using machine learning methods. We first describe basic characteristics of this disease and its typical features and then we analyze the current state and methods of collecting data used for creating decision models. Next, we also summarize the results of our previous research in this area and describe the future directions of our work.
650    _2
$a sběr dat $7 D003625
650    12
$a strojové učení $7 D000069550
650    12
$a Parkinsonova nemoc $x diagnóza $7 D010300
650    _2
$a metody pro podporu rozhodování $7 D003661
650    _2
$a systémy pro podporu klinického rozhodování $7 D020000
650    _2
$a řeč $7 D013060
650    _2
$a psaní $7 D014956
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Paralič, Ján $7 mzk2003180650 $u Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovakia
773    0_
$t International journal on biomedicine and healthcare $x 1805-8698 $g Roč. 5, č. 1 (2017), s. 28-32 $w MED00188409
856    41
$u http://ijbh.org/ijbh2017-1.pdf $y plný text volně přístupný
910    __
$a ABA008 $b online $y 4 $z 0
990    __
$a 20170221080106 $b ABA008
991    __
$a 20170522115014 $b ABA008
999    __
$a ok $b bmc $g 1189743 $s 968010
BAS    __
$a 3 $a 4
BMC    __
$a 2017 $b 5 $c 1 $d 28-32 $i 1805-8698 $m International journal on biomedicine and healthcare $x MED00188409
LZP    __
$c NLK120 $d 20170522 $a NLK 2017-08/pk

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...