• Je něco špatně v tomto záznamu ?

Airflow limitation is accompanied by diaphragm dysfunction

L. Hellebrandová, J. Chlumský, P. Vostatek, D. Novák, Z. Rýznarová, V. Bunc

. 2016 ; 65 (3) : 469-479. [pub] 20160412

Jazyk angličtina Země Česko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17012740

Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maximal expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016). The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV(1)/SVC), (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V(Tmax)), ([l], p=0.0002); and the ratio of tidal volume to slow vital capacity (V(T)/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P(0.1)/V(T)) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17012740
003      
CZ-PrNML
005      
20170424110715.0
007      
ta
008      
170412s2016 xr ad f 000 0|eng||
009      
AR
024    7_
$a 10.33549/physiolres.933064 $2 doi
035    __
$a (PubMed)27070746
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Hellebrandová, Lenka $u Faculty of Physical Education and Sports, Charles University, Prague, Czech Republic $7 xx0277023
245    10
$a Airflow limitation is accompanied by diaphragm dysfunction / $c L. Hellebrandová, J. Chlumský, P. Vostatek, D. Novák, Z. Rýznarová, V. Bunc
520    9_
$a Chronic airflow limitation, caused by chronic obstructive pulmonary disease (COPD) or by asthma, is believed to change the shape and the position of the diaphragm due to an increase in lung volume. We have made a comparison of magnetic resonance imaging (MRI) of diaphragm in supine position with pulmonary functions, respiratory muscle function and exercise tolerance. We have studied the differences between patients with COPD, patients with asthma, and healthy subjects. Most interestingly we found the lung hyperinflation leads to the changes in diaphragmatic excursions during the breathing cycle, seen in the differences between the maximal expiratory diaphragm position (DPex) in patients with COPD and control group (p=0.0016). The magnitude of the diaphragmatic dysfunction was significantly related to the airflow limitation expressed by the ratio of forced expiratory volume in 1 s to slow vital capacity (FEV(1)/SVC), (%, p=0.0007); to the lung hyperinflation expressed as the ratio of the residual volume to total lung capacity (RV/TLC), (%, p=0.0018) and the extent of tidal volume constrain expressed as maximal tidal volume (V(Tmax)), ([l], p=0.0002); and the ratio of tidal volume to slow vital capacity (V(T)/SVC), (p=0.0038) during submaximal exercise. These results suggest that diaphragmatic movement fails to contribute sufficiently to the change in lung volume in emphysema. Tests of respiratory muscle function were related to the position of the diaphragm in deep expiration, e.g. neuromuscular coupling (P(0.1)/V(T)) (p=0.0232). The results have shown that the lung volumes determine the position of the diaphragm and function of the respiratory muscles. Chronic airflow limitation seems to change the position of the diaphragm, which thereafter influences inspiratory muscle function and exercise tolerance. There is an apparent relationship between the position of the diaphragm and the pulmonary functions and exercise tolerance.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a bronchiální astma $x patofyziologie $7 D001249
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a bránice $x patofyziologie $7 D003964
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a chronická obstrukční plicní nemoc $x patofyziologie $7 D029424
650    _2
$a respirační funkční testy $7 D012129
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chlumský, Jan, $d 1964- $7 mzk2004258491 $u Department of Pulmonary Diseases, Thomayer Hospital, Prague, Czech Republic
700    1_
$a Vostatek, Pavel. $7 xx0242229 $u Department of Cybernetics, Czech Technical University, Prague, Czech Republic
700    1_
$a Novák, Daniel, $d 1976- $7 ntka173552 $u Department of Cybernetics, Czech Technical University, Prague, Czech Republic
700    1_
$a Rýznarová, Zuzana $7 _AN054422 $u Department of Radiology, Thomayer Hospital, Prague, Czech Republic
700    1_
$a Bunc, Václav, $d 1947- $7 kup19960000012346 $u Faculty of Physical Education and Sports, Charles University, Prague, Czech Republic
773    0_
$w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 65, č. 3 (2016), s. 469-479
856    41
$u http://www.biomed.cas.cz/physiolres/ $y domovská stránka časopisu
910    __
$a ABA008 $b A 4120 $c 266 $y 4 $z 0
990    __
$a 20170412 $b ABA008
991    __
$a 20170421081524 $b ABA008
999    __
$a ok $b bmc $g 1201675 $s 973513
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 65 $c 3 $d 469-479 $e 20160412 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
LZP    __
$b NLK118 $a Pubmed-20170412

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace