-
Je něco špatně v tomto záznamu ?
Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines
M. Hylsová, B. Carbain, J. Fanfrlík, L. Musilová, S. Haldar, C. Köprülüoğlu, H. Ajani, PS. Brahmkshatriya, R. Jorda, V. Kryštof, P. Hobza, A. Echalier, K. Paruch, M. Lepšík,
Jazyk angličtina Země Francie
Typ dokumentu časopisecké články
- MeSH
- cyklin A metabolismus MeSH
- cyklin-dependentní kinasa 2 antagonisté a inhibitory chemie metabolismus MeSH
- inhibitory proteinkinas chemie metabolismus farmakologie MeSH
- katalytická doména * MeSH
- kvantová teorie * MeSH
- lidé MeSH
- pyrimidiny chemie metabolismus farmakologie MeSH
- racionální návrh léčiv MeSH
- rozpouštědla chemie MeSH
- simulace molekulární dynamiky MeSH
- voda chemie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We present comprehensive testing of solvent representation in quantum mechanics (QM)-based scoring of protein-ligand affinities. To this aim, we prepared 21 new inhibitors of cyclin-dependent kinase 2 (CDK2) with the pyrazolo[1,5-a]pyrimidine core, whose activities spanned three orders of magnitude. The crystal structure of a potent inhibitor bound to the active CDK2/cyclin A complex revealed that the biphenyl substituent at position 5 of the pyrazolo[1,5-a]pyrimidine scaffold was located in a previously unexplored pocket and that six water molecules resided in the active site. Using molecular dynamics, protein-ligand interactions and active-site water H-bond networks as well as thermodynamics were probed. Thereafter, all the inhibitors were scored by the QM approach utilizing the COSMO implicit solvent model. Such a standard treatment failed to produce a correlation with the experiment (R(2) = 0.49). However, the addition of the active-site waters resulted in significant improvement (R(2) = 0.68). The activities of the compounds could thus be interpreted by taking into account their specific noncovalent interactions with CDK2 and the active-site waters. In summary, using a combination of several experimental and theoretical approaches we demonstrate that the inclusion of explicit solvent effects enhance QM/COSMO scoring to produce a reliable structure-activity relationship with physical insights. More generally, this approach is envisioned to contribute to increased accuracy of the computational design of novel inhibitors.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013323
- 003
- CZ-PrNML
- 005
- 20170418110730.0
- 007
- ta
- 008
- 170413s2017 fr f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ejmech.2016.12.023 $2 doi
- 035 __
- $a (PubMed)28039837
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a fr
- 100 1_
- $a Hylsová, Michaela $u Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- 245 10
- $a Explicit treatment of active-site waters enhances quantum mechanical/implicit solvent scoring: Inhibition of CDK2 by new pyrazolo[1,5-a]pyrimidines / $c M. Hylsová, B. Carbain, J. Fanfrlík, L. Musilová, S. Haldar, C. Köprülüoğlu, H. Ajani, PS. Brahmkshatriya, R. Jorda, V. Kryštof, P. Hobza, A. Echalier, K. Paruch, M. Lepšík,
- 520 9_
- $a We present comprehensive testing of solvent representation in quantum mechanics (QM)-based scoring of protein-ligand affinities. To this aim, we prepared 21 new inhibitors of cyclin-dependent kinase 2 (CDK2) with the pyrazolo[1,5-a]pyrimidine core, whose activities spanned three orders of magnitude. The crystal structure of a potent inhibitor bound to the active CDK2/cyclin A complex revealed that the biphenyl substituent at position 5 of the pyrazolo[1,5-a]pyrimidine scaffold was located in a previously unexplored pocket and that six water molecules resided in the active site. Using molecular dynamics, protein-ligand interactions and active-site water H-bond networks as well as thermodynamics were probed. Thereafter, all the inhibitors were scored by the QM approach utilizing the COSMO implicit solvent model. Such a standard treatment failed to produce a correlation with the experiment (R(2) = 0.49). However, the addition of the active-site waters resulted in significant improvement (R(2) = 0.68). The activities of the compounds could thus be interpreted by taking into account their specific noncovalent interactions with CDK2 and the active-site waters. In summary, using a combination of several experimental and theoretical approaches we demonstrate that the inclusion of explicit solvent effects enhance QM/COSMO scoring to produce a reliable structure-activity relationship with physical insights. More generally, this approach is envisioned to contribute to increased accuracy of the computational design of novel inhibitors.
- 650 12
- $a katalytická doména $7 D020134
- 650 _2
- $a cyklin A $x metabolismus $7 D019925
- 650 _2
- $a cyklin-dependentní kinasa 2 $x antagonisté a inhibitory $x chemie $x metabolismus $7 D051357
- 650 _2
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a inhibitory proteinkinas $x chemie $x metabolismus $x farmakologie $7 D047428
- 650 _2
- $a pyrimidiny $x chemie $x metabolismus $x farmakologie $7 D011743
- 650 12
- $a kvantová teorie $7 D011789
- 650 _2
- $a rozpouštědla $x chemie $7 D012997
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a voda $x chemie $7 D014867
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Carbain, Benoit $u Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic.
- 700 1_
- $a Fanfrlík, Jindřich $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Musilová, Lenka $u Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
- 700 1_
- $a Haldar, Susanta $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Köprülüoğlu, Cemal $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Ajani, Haresh $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic. $7 gn_A_00002766
- 700 1_
- $a Brahmkshatriya, Pathik S $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic.
- 700 1_
- $a Jorda, Radek $u Laboratory of Growth Regulators, Faculty of Science, Palacký University, Institute of Experimental Botany, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- 700 1_
- $a Kryštof, Vladimír $u Laboratory of Growth Regulators, Faculty of Science, Palacký University, Institute of Experimental Botany, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
- 700 1_
- $a Hobza, Pavel $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic; Regional Center of Advanced Technologies and Materials, Department of Physical Chemistry, Palacký University, 771 46 Olomouc, Czech Republic.
- 700 1_
- $a Echalier, Aude $u Centre de Biochimie Structurale, CNRS UMR 5048 - UM - INSERM U 1054, 29 rue de Navacelles, 34090 Montpellier, France.
- 700 1_
- $a Paruch, Kamil $u Department of Chemistry, CZ Openscreen, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic. Electronic address: paruch@chemi.muni.cz.
- 700 1_
- $a Lepšík, Martin $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nam. 2, 166 10 Prague 6, Czech Republic. Electronic address: lepsik@uochb.cas.cz.
- 773 0_
- $w MED00001628 $t European journal of medicinal chemistry $x 1768-3254 $g Roč. 126, č. - (2017), s. 1118-1128
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28039837 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170418111038 $b ABA008
- 999 __
- $a ok $b bmc $g 1199788 $s 974101
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 126 $c - $d 1118-1128 $e 20161211 $i 1768-3254 $m European journal of medicinal chemistry $n Eur J Med Chem $x MED00001628
- LZP __
- $a Pubmed-20170413