-
Je něco špatně v tomto záznamu ?
Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM
L. Alán, T. Špaček, P. Ježek,
Jazyk angličtina Země Německo
Typ dokumentu časopisecké články
NLK
ProQuest Central
od 1997-01-01 do 2019-01-31
Medline Complete (EBSCOhost)
od 1996-11-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-01-01 do 2019-01-31
- MeSH
- algoritmy * MeSH
- analýza hlavních komponent * MeSH
- buňky Hep G2 MeSH
- DNA vazebné proteiny metabolismus MeSH
- fluorescenční mikroskopie * MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- mitochondriální DNA chemie metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- molekulární modely MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17014114
- 003
- CZ-PrNML
- 005
- 20170428112619.0
- 007
- ta
- 008
- 170413s2016 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00249-016-1114-5 $2 doi
- 035 __
- $a (PubMed)26846371
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Alán, Lukáš $u Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic. $7 gn_A_00003279
- 245 10
- $a Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM / $c L. Alán, T. Špaček, P. Ježek,
- 520 9_
- $a Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a mitochondriální DNA $x chemie $x metabolismus $7 D004272
- 650 _2
- $a DNA vazebné proteiny $x metabolismus $7 D004268
- 650 _2
- $a buňky Hep G2 $7 D056945
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a zobrazování trojrozměrné $7 D021621
- 650 12
- $a fluorescenční mikroskopie $7 D008856
- 650 _2
- $a mitochondriální proteiny $x metabolismus $7 D024101
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 12
- $a analýza hlavních komponent $7 D025341
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Špaček, Tomáš $u Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic.
- 700 1_
- $a Ježek, Petr $u Department of Membrane Transport Biophysics, No. 75, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220, Prague 4, Czech Republic. jezek@biomed.cas.cz.
- 773 0_
- $w MED00001590 $t European biophysics journal EBJ $x 1432-1017 $g Roč. 45, č. 5 (2016), s. 443-61
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26846371 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170428112940 $b ABA008
- 999 __
- $a ok $b bmc $g 1200579 $s 974892
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 45 $c 5 $d 443-61 $e 20160205 $i 1432-1017 $m European biophysics journal $n Eur Biophys J $x MED00001590
- LZP __
- $a Pubmed-20170413