• Je něco špatně v tomto záznamu ?

Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data

M. Modrák, J. Vohradský,

. 2018 ; 19 (1) : 137. [pub] 20180413

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000804

BACKGROUND: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000804
003      
CZ-PrNML
005      
20240206093931.0
007      
ta
008      
190107s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-018-2138-x $2 doi
035    __
$a (PubMed)29653518
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Modrák, Martin $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic. martin.modrak@biomed.cas.cz. $7 xx0313530
245    10
$a Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data / $c M. Modrák, J. Vohradský,
520    9_
$a BACKGROUND: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
650    _2
$a Bacteria $x genetika $7 D001419
650    12
$a databáze genetické $7 D030541
650    _2
$a Eukaryota $x genetika $7 D056890
650    12
$a regulace genové exprese $7 D005786
650    12
$a genové regulační sítě $7 D053263
650    _2
$a lidé $7 D006801
650    _2
$a regulon $x genetika $7 D018085
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a Saccharomyces cerevisiae $x genetika $7 D012441
650    12
$a software $7 D012984
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vohradský, Jiří $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 19, č. 1 (2018), s. 137
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29653518 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20240206093928 $b ABA008
999    __
$a ok $b bmc $g 1364805 $s 1038927
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 19 $c 1 $d 137 $e 20180413 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...