-
Something wrong with this record ?
Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data
M. Modrák, J. Vohradský,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
BioMedCentral
from 2000-12-01
BioMedCentral Open Access
from 2000
Directory of Open Access Journals
from 2000
Free Medical Journals
from 2000
PubMed Central
from 2000
Europe PubMed Central
from 2000
ProQuest Central
from 2009-01-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2000-07-01
Medline Complete (EBSCOhost)
from 2000-01-01
Health & Medicine (ProQuest)
from 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2000
Springer Nature OA/Free Journals
from 2000-12-01
- MeSH
- Bacteria genetics MeSH
- Time Factors MeSH
- Databases, Genetic * MeSH
- Eukaryota genetics MeSH
- Gene Regulatory Networks * MeSH
- Humans MeSH
- Gene Expression Regulation * MeSH
- Regulon genetics MeSH
- Reproducibility of Results MeSH
- Saccharomyces cerevisiae genetics MeSH
- Software * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000804
- 003
- CZ-PrNML
- 005
- 20240206093931.0
- 007
- ta
- 008
- 190107s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12859-018-2138-x $2 doi
- 035 __
- $a (PubMed)29653518
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Modrák, Martin $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic. martin.modrak@biomed.cas.cz. $7 xx0313530
- 245 10
- $a Genexpi: a toolset for identifying regulons and validating gene regulatory networks using time-course expression data / $c M. Modrák, J. Vohradský,
- 520 9_
- $a BACKGROUND: Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. RESULTS: We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. CONCLUSIONS: Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
- 650 _2
- $a Bacteria $x genetika $7 D001419
- 650 12
- $a databáze genetické $7 D030541
- 650 _2
- $a Eukaryota $x genetika $7 D056890
- 650 12
- $a regulace genové exprese $7 D005786
- 650 12
- $a genové regulační sítě $7 D053263
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a regulon $x genetika $7 D018085
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 12
- $a software $7 D012984
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vohradský, Jiří $u Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, 1083, Prague, Czech Republic.
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 19, č. 1 (2018), s. 137
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29653518 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20240206093928 $b ABA008
- 999 __
- $a ok $b bmc $g 1364805 $s 1038927
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 19 $c 1 $d 137 $e 20180413 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- LZP __
- $a Pubmed-20190107