-
Something wrong with this record ?
Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis
E. Dobáková, P. Flegontov, T. Skalický, J. Lukeš,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2009
Free Medical Journals
from 2009
PubMed Central
from 2009
Europe PubMed Central
from 2009
Open Access Digital Library
from 2009-01-01
Open Access Digital Library
from 2009-01-01
Open Access Digital Library
from 2009-01-01
Oxford Journals Open Access Collection
from 2009
ROAD: Directory of Open Access Scholarly Resources
from 2009
PubMed
26590215
DOI
10.1093/gbe/evv229
Knihovny.cz E-resources
- MeSH
- RNA Editing MeSH
- Electron Transport Chain Complex Proteins genetics MeSH
- Euglena gracilis genetics MeSH
- Genome, Mitochondrial * MeSH
- Evolution, Molecular * MeSH
- RNA, Ribosomal genetics MeSH
- RNA Splicing MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17014216
- 003
- CZ-PrNML
- 005
- 20170428123004.0
- 007
- ta
- 008
- 170413s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/gbe/evv229 $2 doi
- 035 __
- $a (PubMed)26590215
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Dobáková, Eva $u Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Departments of Biochemistry and Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
- 245 10
- $a Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis / $c E. Dobáková, P. Flegontov, T. Skalický, J. Lukeš,
- 520 9_
- $a In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor.
- 650 _2
- $a elektronový transportní řetězec $x genetika $7 D045222
- 650 _2
- $a Euglena gracilis $x genetika $7 D005056
- 650 12
- $a molekulární evoluce $7 D019143
- 650 12
- $a genom mitochondriální $7 D054629
- 650 _2
- $a editace RNA $7 D017393
- 650 _2
- $a sestřih RNA $7 D012326
- 650 _2
- $a RNA ribozomální $x genetika $7 D012335
- 650 _2
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Flegontov, Pavel $u Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Skalický, Tomáš $u Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic.
- 700 1_
- $a Lukeš, Julius $u Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic Canadian Institute for Advanced Research, Toronto, Ontario, Canada jula@paru.cas.cz.
- 773 0_
- $w MED00170504 $t Genome biology and evolution $x 1759-6653 $g Roč. 7, č. 12 (2015), s. 3358-67
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26590215 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170428123326 $b ABA008
- 999 __
- $a ok $b bmc $g 1200681 $s 974994
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 7 $c 12 $d 3358-67 $e 20151120 $i 1759-6653 $m Genome biology and evolution $n Genome Biol Evol $x MED00170504
- LZP __
- $a Pubmed-20170413